Teaching Plan for the Session: 2022-23 Name of the Teacher: Dr. Dhiraj Talukdar Department: Chemistry Paper Name: ORGANICCHEMISTRY-III Semester: IV Paper Code: CHE-HC-4026 Learning Objectives: 1. Students are expected to learn about different classes of N-based compounds; their structures, synthesis and reactivity 2. Students shall demonstrate the ability to identify and classify different types of N-based derivatives, alkaloids and hetrocyclic compounds/explain their structure mechanism and reactivity/critically examine their synthesis and reactions mechanism | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |-------------------------|--|------------------------|------------------------------------|--|-----------------------------------| | | Nitrogen Containing Functional
Groups | Books, E-
resources | Chalk &
Black Board
& ICT | Students' seminar | Unit Test &
Home
assignment | | 1-5 | Preparation and important reactions of
nitro compounds, nitriles and
isonitriles | | | | | | 6-8 | Amines/
Effect of substituent and solvent on
basicity | | | | | | 8-10 | Preparation and properties of amines | | | | | | 11 | Gabriel phthalimide synthesis
Carbylamine reaction | | | | | | 12 | Mannich reaction, Hoffmann's
exhaustive methylation | | | | | | 13 & 14 | Hofmann-elimination reaction | | |---------|---|-------------------| | 15 &16 | Distinction between 1°, 2°and3°
amines with Hinsberg reagent and
nitrous acid | | | 17 & 18 | Diazonium Salts :Preparation and their synthetic applications | | | 19 | | Unit test | | 20 | | Students' seminar | Teaching Plan for the Session: 2022-23 Name of the Teacher: Dr. Dhiraj Talukdar Department: Chemistry Paper Name: ORGANICCHEMISTRY-V Semester: VI Paper Code: CHE-HC-6026 #### Learning Objectives: 1. Students are expected to learn about the different spectroscopic techniques and their applications in organic chemistry 2. Students shall be apprised with carbohydrate chemistry, dyes and polymers and their structure, reactivity and chemical properties 3. Students shall be able to classify/identify/critically examine carbohydrates, polymers and dye materials. | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |-------------------------|--|------------------------|------------------------------------|--|-----------------------------------| | | Carbohydrates | Books, E-
resources | Chalk &
Black Board
& ICT | Students' seminar | Unit Test &
Home
assignment | | 1 & 2 | Occurrence, classification and their biological importance | | | | | | 3-5 | Monosaccharides: Constitution and
absolute configuration of glucose and
fructose | | | | | | 6 | epimers and anomers, mutarotation, | | | | | | 7 & 8 | determination of ring size of glucose
and fructose | | | | Home
assignment | | | Haworth projections and conformational structures; | | |---------|---|--------------------| | 9 & 10 | Interconversions of aldoses and
ketoses; Killiani- Fischer synthesis
and Ruff degradation; | | | 11-13 | Disaccharides – Structure elucidation of maltose, lactose and sucrose | | | 14 & 15 | Polysaccharides-Elementary treatment of starch, cellulose and glycogen. | | | 16 | | Unit Test | | | Dyes | | | 17 | Classification, Colour and
constitution; Mordant and Vat Dyes | | | 18 & 19 | Synthesis and applications of Azo
dyes – Methyl Orange and Congo Red
(mechanism of Diazo Coupling) | | | 20 & 21 | Synthesis and applications of
Triphenyl Methane Dyes -Malachite
Green, Rosaniline and Crystal Violet | Home
assignment | | 22 | Synthesis and applications of
Phthalein Dyes – Phenolphthalein and
Fluorescein; | | | 23 | Natural dyes synthesis of Alizarin and
Indigotin | | | 24 | Edible Dyes with examples. | | | 25 | | Unit Test | | | Polymers | | | 26 | Introduction and classification | | | 27 & 28 | Number average molecular weight, Weight average molecular weight, Degree of polymerization, Polydispersity Index. | Home assignment | | 29 & 30 | Polymerisation reactions -Addition
and condensation -Mechanism of
cationic, anionic and free radical
addition polymerization; | | |---------|---|-------------------| | 31 & 32 | Preparation and applications of
plastics – thermosetting (phenol-
formaldehyde, Polyurethanes) and
thermosoftening (PVC, polythene); | | | 33 & 34 | Fabrics – natural and synthetic
(acrylic, polyamido, polyester) | | | 35 & 36 | Rubbers – natural and synthetic:Buna-
S, Chloroprene and Neoprene;
Vulcanization; Polymeradditives | | | 37 | Introduction to liquid crystal polymers; Biodegradable and conducting polymers with examples. | | | 38 | | Students' seminar | ## Teaching Plan for the Session: Jan-Jun 2023 Name of the Teacher: Dr. Pranita Bora Department: Chemistry Paper Name: Physical Chemistry II Learning Objectives: Semester: II - Students are expected to learn about partial molar properties, different thermodynamic properties and also colligative properties of dilute solutions. - 2. Students are expected to learn about free energy functions, Gibbs Helmholtz equations, Maxwell's relations etc. | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |-------------------------|---|---|------------------------------------|---|----------------------------------| | 1-2 | Partial molar quantities | Books, ppt. | Black board
teaching | Asking students about
previous knowledge of
the topic | | | 3 | Dependence of thermodynamic parameters on composition | Book | Black board
teaching | | | | 4 | Gibb's Duhem equation & discussion | Book | Black board
teaching | | | | 5 | Chemical potential | Book | | | | | 6-7 | Thermodynamic functions of mixing and questions solving | Book | Black board
teaching | Numerical solving | | | 8 | Thermodynamic equilibrium, degree of advancement of reaction | Previous year
question paper and
book | | | | | 9 | Fugacity, relation between Gibbs free
energy and reaction quotient | Book | Black board
teaching | | | | 10 | Exoergic and endoergic reactions, equilibrium constant | Book | Black board
teaching | | | |-------|---|------|-------------------------|-------------------|-----| | 11 | Dependence of equilibrium constant on
temperature, pressure and concentration | Book | Black board
teaching | | | | 12 | Free energy of mixing and spontaneity,
numerical solving | Book | Black board
teaching | Numerical solving | | | 13 | Relation between K _p , K _c & K _v , numerical
solving | Book | Black board
teaching | Numerical solving | | | 14 | Le Chatelier principle, ideal and
condensed phase equilibrium | Book | Black board
teaching | | | | 15 | Test | | | | MCQ | | 16 | Dilute solutions, Raoult's and Henry's
law, colligative properties | Book | Black board
teaching | | | | 17 | Relative lowering of vapor pressure | Book | Black board
teaching | | | | 18 | Elevation of boiling point | Book | Black board
teaching | | | | 19 | Depression of freezing point, osmotic
pressure | Book | Black board
teaching | | | | 20 | Osmotic pressure, numerical solving | Book | Black board
teaching | Numerical solving | | | 21-22 | Calculation of molar mass | Book | Black board
teaching | net to the | | | 23 | Gibbs and Helmholtz energy, Variation of
S, G with T, V | Book | Black board
teaching | | | | 24 | Variation of S, G with P and Variation of
A with T, V, P | Book | Black board
teaching | | | | 25 | Different enthalpy change processes,
entropy change and free energy change,
numerical | Book | Black board
teaching | Numerical solving | | | 26 | Joule-Thomson coefficient, inversion
temperature, Gibbs-Helmholtz equation | Book | Black board
teaching | | | | 27 | Maxwell's relations, thermodynamic equation of state | Book | Black board
teaching | | | ## Teaching Plan for the Session: Jan-Jun 2023 Name of the Teacher: Dr. Pranita Bora Department: Chemistry Paper Name: Physical Chemistry IV Learning Objectives: Semester: IV Paper Code: CHE-HC-4036 Students will understand theories of conductance and electrochemistry. Students will also expected to understand various parts of electrochemical cells along with Faraday's laws of electrolysis. | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |-------------------------|--|---|------------------------------------|---|----------------------------------|
 1 | Faraday's laws of electrolysis | Books, ppt. | Black board
teaching | Asking students about
previous knowledge of
the topic | | | 2 | Chemical cells, reversible | Book | Black board
teaching | | | | 3 | Reversible and irreversible cell | Book | Black board
teaching | | | | 4 | Single electrode potential, its sign,
thermodynamics of reversible and
irreversible cell | Book | Black board
teaching | | | | 5 | Relation between electrical energy and
enthalpy, determination of ΔH, ΔG, ΔS | Book | Black board
teaching | | | | 6 | Electromotive force and equilibrium constant | Previous year
question paper and
book | | Numerical solving | | | 7 | Nernst equation and numerical solving | Book | Black board
teaching | | | | 8 | Numerical solving | Previous year
question paper and | | Numerical solving | | | | | book | | | | |---------|---|---|-------------------------|---|--| | 9 | Electromotive force, numerical solving | Previous year
question paper and
book | | Numerical solving | | | 10 | Numerical | Previous year
question paper and
book | | Numerical solving | | | 11 | Concentration cells, electrode concentration cells | Book | Black board
teaching | Discussion/revision of
previous topics by
questioning | | | 12 | Electrolyte concentration cells | Book | Black board
teaching | | | | 13 | Concentration cells without transference | Book | Black board
teaching | | | | 14 | Concentration cells with transference | Book | Black board
teaching | | | | 15 | Liquid junction potential, numerical | Book | Black board
teaching | Numerical solving | | | 16 | Determination of activity coefficients of electrolytes | Book | Black board
teaching | | | | 17 | Numerical | Book | | Numerical solving | | | 18 | Determination of transference no., pH | Book | Black board
teaching | | | | 19 | Limitation of quinhydrone electrode,
Determination of pH using glass electrode | Book | Black board
teaching | | | | 20 & 21 | Acid-base titration | Book, OER | Black board
teaching | | | | 22 | Numerical & Redox titrations | Book | Black board
teaching | Numerical solving | | | 23 | Precipitation titration and oxidation-
reduction indicators | Book | Black board
teaching | | | | 24 | Application in metallurgy and industry | Book | Black board
teaching | | | | 25 | Problem solving | | | Numerical solving | | # Teaching Plan for the Session: Jan-Jun 2023 Name of the Teacher: Dr. Pranita Bora Department: Chemistry Paper Name: Industrial Chemicals and Environment Learning Objectives: Semester: VI - 1. Students will understand about different forms of renewable and non-renewable sources of energy. They would also come to know about biocatalysis and the importance of sustainable development and green chemistry in future. - 2. Students will get to know about water pollution, its sources, industrial waste and their effects on living organisms along with water purification and waste management techniques. | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |-------------------------|--|-----------------------|------------------------------------|--|----------------------------------| | 1-3 | Renewable sources of energy | Books, OER | Black board
teaching | Discussion | | | 4-5 | Non-renewable sources of energy | Book, OER | Black board
teaching | Discussion | | | 6 | Nuclear energy | Book, OER | Black board
teaching | | | | 7 | Nuclear pollution | Book, OER | Black board
teaching | | | | 8 | Effects of Nuclear pollution, its
prevention & disposal | Book, OER | Black board
teaching | | | | 9 | Disposal management, nuclear disaster
and its management | Book, OER | Black board
teaching | | | | 10 | Introduction to biocatalysis, its
classification, advantage | Book, OER | Black board
teaching | | | | 11 | Specificity/selectivity, disadvantage,
mechanism | Book, OER | Black board
teaching | | | |-------|---|-----------|-------------------------|---------------------|------------------------| | 12 | Sustainable development | Book, OER | Black board
teaching | Discussion | | | 13 | Green chemistry | Book, OER | Black board
teaching | Discussion | | | 14-17 | Water treatment and purification methods | Book, OER | Black board
teaching | | | | 18-20 | Effluent treatment, | Book, OER | Black board
teaching | | | | 13 | Sludge disposal | Book, OER | Black board
teaching | | | | 14 | Industrial waste management | Book, OER | Black board
teaching | | | | 15 | Water quality parameters | Book, OER | Black board
teaching | | | | 16-18 | Seminars | | | Group presentations | Group
presentations | ## Teaching Plan for the Session: Aug-Dec 2023 Name of the Teacher: Dr. Pranita Bora Department: Chemistry Paper Name: Chemistry I Learning Objectives: Semester: I Paper Code: CHE0100104 Students will understand about very important states of matter, i.e., gaseous and liquid state of matter. | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |-------------------------|---|-----------------------|------------------------------------|---|----------------------------------| | 1 | Gaseous state: Postulates of kinetic theory of gases | Books | Black board
teaching | Asking students about
previous knowledge of
the topic | | | 2 | Causes of deviation from ideal behavior,
compressibility factor and its variation | Book | Black board
teaching | | | | 3 | Derivation of Vander Waals equation of state | Book | Black board
teaching | | | | 4 | Limitations of Vander Waals equation,
Berthelot equation, virial equation of state | Book | Black board
teaching | | | | 5 | Boyle temperature, continuity of states | Book | Black board
teaching | | | | 6 | Critical phenomenon, Vander waals
equation and critical states | Book | Black board
teaching | | | | 7 | Critical compressibility factor, law of
corresponding states | Book | Black board
teaching | | | | 8 | Discussion/revision of previous,
numerical solving | Book | Black board
teaching | Questions to groups of
students to think critically | | | 14 | Test | | | | MCQ/Exam | |----|---|------|-------------------------|--|----------| | 15 | Liquid state: vacancy theory, free volume | Book | Black board
teaching | | | | 16 | Vapour pressure, surface tension | Book | Black board
teaching | | | | 17 | Surface tension, Effects of temperature on
surface tension | Book | Black board
teaching | | | | 18 | Effects of surface tension | Book | Black board
teaching | | | | 19 | Viscosity, effect of temperature and
pressure | Book | Black board
teaching | | =1 | | 20 | Surface active agents | Book | Black board
teaching | | | | 21 | Discussion and revision of topics,
numerical solving | Book | Black board
teaching | Questions to groups of
students to think critically | | ## Teaching Plan for the Session: Aug-Dec 2023 Name of the Teacher: Dr. Pranita Bora Department: Chemistry Course Name: Basic Analytical Chemistry (SEC) Learning Objectives: Semester: I Paper Code: SEC0101003 Students will learn about basic principles of chemical analysis, soil sample analysis and water sample analysis. Students will also learn about food industry, techniques of processing and preservation. The last unit deals with chromatography, which basically give a brief un | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating Learning
Used | Mode of
Assessment for
CIE | |-------------------------|--|-----------------------|------------------------------------|--|----------------------------------| | -1 | Introduction to analytical chemistry,
concept of sampling | Books, ppt. | Black board
teaching | | | | 2 | Accuracy & precision, error, replicates,
mean & median | Book | Black board
teaching | | | | 3 | Range, standard deviation, relative
standard deviation | Book | Black board
teaching | Numerical solve | | | 4 | Numerical, significant figures | Book | Black board
teaching | Discussion | | | 5-7 | Composition of soil, types of silicates | Book | Black board
teaching | | | | 8-9 | Soil acidity & pH, determination | Book | Black board
teaching | | | | 10 | Complexometric titrations | Book | Black board
teaching | | | | 11 | Chelate effect, indicators | Book | Black board
teaching | | | | 12 | Determination of calcium and | Book | Black board | | | | | magnesium by complexometric titration | | teaching | | | |-------|--|-------------------------|-------------------------|-----------------------------|----------| | 10 | Presentation | | | Group seminar presentations | | | 11 | Water sampling methods | Book | Black board
teaching | | | | 12-13 | Water pollution and its sources | Book, video
tutorial | Black board
teaching | | 17 | | 14-15 | Water purification methods | Book | Black
board
teaching | | | | 16-17 | Water analysis, determination of acidity,
alkalinity and dissolved oxygen | Book | Black board
teaching | | | | 18 | Test | | | | MCQ/Quiz | | 19 | Analysis of food products, nutritional value of food | Book | Black board
teaching | | | | 20 | Food processing, classification,
consequences | Book | Black board
teaching | | | | 21-22 | Traditional and modern methods of Food preservation | Book | Black board
teaching | Discussion | | | 23-24 | Food adulteration, method of detection | Book | Black board
teaching | Discussion | | | 25-26 | Analysis of food preservatives | Book | Black board
teaching | | | | 27 | Introduction to chromatography and its classification | Book | Black board
teaching | | | | 28 | Planar chromatography, column
chromatography | Book | Black board
teaching | | | | 29-30 | | Book | Black board
teaching | | | | 31 | Mechanism behind chromatographic separation | Book | Black board
teaching | | | | 32 | Modes of paper chromatography, | Book | Black board
teaching | | | | 33 | Experimental procedure of separation of mixtures | Book | Black board
teaching | | | ## Teaching Plan for the Session: Aug-Dec 2022 Name of the Teacher: Dr. Pranita Bora Department: Chemistry Paper Name: Physical Chemistry I Learning Objectives: Semester: I - 1. Students will understand about the gaseous state of matter. Deviation of ideal gases from real gas and different derivations. - 2. Concepts molecular and crystal symmetry will help students understand about solid state chemistry and group theory in higher studies. | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |-------------------------|--|-----------------------|------------------------------------|---|----------------------------------| | 1 | Gaseous state: Postulates of kinetic theory of gases | Books | Black board
teaching | Asking students about
previous knowledge of
the topic | | | 2 | Derivation of kinetic gas equation | Book | Black board
teaching | | | | 3 | Derivation of gas laws from kinetic gas
equation, collision diameter, frequency,
number, cross-section | Book | Black board
teaching | | | | 4 | Mean free path, effect of temperature and
pressure on collision frequency and mean
free path | Book | Black board
teaching | | | | 5 | Maxwell's distribution of molecular velocities | Book | Black board
teaching | | | | 6 | Viscosity of gases and its temperature and pressure dependence | Book | Black board
teaching | | | | 7 | Behaviour of real gases, compressibility
factor | Book | Black board
teaching | | | | 8 | Causes of deviation, derivation of Vander
Waals equation of state | Book | Black board
teaching | | |----|---|-------------------------|-------------------------|----------| | 9 | Limitations of vander waals equation,
Berthelot equation, virial equation of state | Book | Black board
teaching | | | 10 | Boyle temperature, continuity of states | Book | Black board
teaching | | | 11 | Critical phenomenon, vander waals
equation and critical states | Book | Black board
teaching | | | 12 | Critical compressibility factor, law of
corresponding states | Book | Black board
teaching | | | 13 | Discussion/revision of previous,
numerical solving | Book | Black board
teaching | | | 14 | Test | | | MCQ/Exam | | 15 | Symmetry, symmetry elements and operation | Book, video
tutorial | Black board
teaching | | | 16 | symmetry elements and operation with
examples | Book | Black board
teaching | | | 17 | Practice with examples, point group | Book | Black board
teaching | | | 18 | Point group concept with examples | Book | Black board
teaching | | | 19 | Crystal system and Bravais lattices | Book | Black board
teaching | | #### Teaching Plan for the Session: Aug-Dec 2022 Name of the Teacher: Dr. Pranita Bora Department: Chemistry Paper Name: Physical Chemistry III Learning Objectives: Semester: III - Students will understand about reaction kinetics, rate laws and rates of different reactions. The knowledge gained will help students understand the conditions of getting maximum yield of several industrial products, environmental reactions and biological systems. - The study of catalysis provides students with a deep understanding of the principles underlying the acceleration of chemical reactions and their diverse applications in both laboratory and industrial settings. | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |-------------------------|---|---|------------------------------------|---|----------------------------------| | 1 | Rate of reaction, order and molecularity of simple and complex reaction, rate law | Books, ppt. | Black board
teaching | Asking students about previous knowledge of the topic | | | 2 | Differential form of rate expressions upto
second order, integrated form of rate
expressions derivation of zero and first
order reaction | Book | Black board
teaching | * | | | 3 | Integrated form of rate expression of second order reaction, | Book | Black board
teaching | | | | 4 | Problems and Numericals of previous learning | Previous year
question paper and
book | | | Numerical
solving | | 5 | Half life period of a reaction, t _{1/2} of 0 th , 1 st , 2 nd and n th order | Book | Black board
teaching | \(\) | | | 6 | Problems and Numericals on half life
period | Previous year
question paper and
book | | | Numerical
solving | |----|---|---|-------------------------|---|----------------------| | 7 | Experimental methods of determination of rate law | Book | Black board
teaching | | | | 8 | Experimental methods of determination of rate law and complex reaction | Book | Black board
teaching | | | | 9 | Kinetics of opposing and parallel reaction
and their differential rate equation | Book | Black board
teaching | | | | 0 | Kinetics of consecutive reactions and their
differential rate equation, chain reaction | Book | Black board
teaching | | | | 1 | Temperature dependence of reaction rate,
Arrhenius equation, activation energy | Book | Black board
teaching | Discussion/revision of
previous topics by
questioning | | | 12 | Collision theory derivation and | Book | Black board
teaching | | | | 13 | discrepancies Activated complex theory and Eyring | Book | Black board
teaching | | | | 14 | equation Lindemann theory and mechanism | Book | Black board
teaching | | Monioria | | 15 | Test | | | | MCQ/Quiz | | 16 | Introduction to catalyst and its types, | Book | Black board
teaching | | | | 17 | specificity and selectivity Acid base catalysis mechanism and | Book | Black board
teaching | | | | 18 | Enzyme catalyzed reactions and | Book | Black board
teaching | | | | 19 | Cases of Michaelis-Menten equation and | Book | Black board
teaching | | | | 20 | Lineweaver-Burk method Mechanism of heterogeneous catalysis, nanoparticles as a catalyst | Book, OER | Black board
teaching | | | ## Teaching Plan for the Session: Aug-Dec 2022 Name of the Teacher: Dr. Pranita Bora Department: Chemistry Paper Name: Physical Chemistry V Learning Objectives: Semester: V - 1. Students will understand about different spectroscopic techniques for characterization of samples, mainly the theory behind these techniques is included in the syllabus. - 2. From the second unit the students will understand the photochemical reactions, their importance and different processes related to these reactions. | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |-------------------------|---|---|------------------------------------|---|----------------------------------| | 1 | Importance of spectroscopy and its uses,
Electromagnetic radiation and its
interaction with matter | Books, OER | Black board
teaching | Asking students about previous knowledge of the topic | | | 2 | Various types of spectra and Born
Oppenheimer approximation | Book | Black board
teaching | | | | 3 | Rotational spectra of Diatomic molecule,
rotational selection rule | Book | Black board
teaching | | | | 4 | Intensities of spectral lines, determination
of internuclear distance, rotational spectra
of polyatomic molecules | Book | Black board
teaching, PPT. | | | | 5 | Rotational spectra of polyatomic
molecules, isotopic substitution | Book | Black board
teaching | | | | 6 | Revision/Discussion and Numerical
solving on the topics taught | Previous year
question paper and
book | | Numerical solving | | | 7 | Vibrational spectroscopy classical equation and force constant | Book | Black board
teaching | | | |---------
--|-----------|-------------------------------|---|----------| | 8 | Diatomic vibrating rotator, Morse
potential, dissociation energies, selection
rule | Book | Black board
teaching | | | | 9 | Anharmonic vibrations, selection rule,
revision | Book | Black board
teaching | Questionnaire discussion | | | 10 & 11 | Vibration-rotation spectra of diatomic
molecule, P, Q, R Branch | Book | Black board
teaching | - | | | 12 | Rotation vibration interaction, revision | Book | Black board
teaching | Asking students to draw
spectra for different
transitions | | | 13 | Isotopic substitution, numerical | Book | Black board
teaching | Solve numerical from
previous year question
papers & Book | | | 14 | Degree of freedom, mode of vibrations
with example | Book | Black board
teaching, PPT. | 1-5 | | | 15 | Introduction to Raman spectra, Stokes &
anti-stokes lines, selection rule, Pure
rotational Raman spectra of diatomic
molecule | Book | Black board
teaching, PPT. | | | | 16 | Pure rotational Raman spectra of diatomic
molecule, pure vibrational Raman spectra | Book | Black board
teaching, PPT. | | | | 17 | Rotational-vibrational Raman spectra,
effect on intensity of lines | Book | Black board
teaching | | | | 18 | Rule of mutual exclusion principle,
numerical | Book | Black board
teaching | Solve numerical from
previous year question
papers & Book | | | 19 | Electronic spectra, absorption of light | Book | Black board
teaching | papero de Book | | | 20 | Potential energy curve, dissociation and
pre-dissociation | Book | Black board
teaching | | | | 21 | Franck-Condon Principle | Book, OER | Black board
teaching, PPT. | | | | 22 | Electronic transitions, fluorescence and
phosphorescence | Book, OER | Black board
teaching, PPT. | | | | 23 | Selection rule | Book | Black board
teaching | | - | | 24 | Intensity of electronic bands, factors
affecting the intensity of bands | Book, OER | Black board
teaching, PPT. | | | | 25 | Test | | Direction of the second | | MCQ/Exam | | 26 | Photosensitization and quenching | Book | Black board
teaching | | |----|---|------|-------------------------|--| | 27 | Stern-Volmer equation, biochemical processes | Book | Black board
teaching | | | 28 | Luminescence, chemiluminescence,
Jablonski diagram | Book | Black board
teaching | | | 29 | Photochemical equilibrium & photostationary states | Book | Black board
teaching | ## Teaching Plan for the Session: Aug-Dec 2022 Name of the Teacher: Dr. Pranita Bora Department: Chemistry Paper Name: Basic Analytical Chemistry (SEC) Learning Objectives: Semester: III Paper Code: CHE-SE-3036 Students will learn about basic principles of chemical analysis, soil sample analysis and water sample analysis. | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating Learning
Used | Mode of
Assessment for
CIE | |-------------------------|---|-----------------------|------------------------------------|--|----------------------------------| | 1 | Introduction to analytical chemistry,
concept of sampling | Books, ppt. | Black board
teaching | | | | 2 | Accuracy & precision, error, replicates,
mean & median | Book | Black board
teaching | | | | 3 | Range, standard deviation, relative
standard deviation | Book | Black board
teaching | | | | 4 | Numerical, significant figures | | | | | | 5-7 | Composition of soil, types of silicates | Book | Black board
teaching | | | | 8-9 | Soil acidity & pH, determination | | | | | | 10 | Complexometric titrations | Book | Black board
teaching | | | | 11 | Chelate effect, indicators | Book | Black board
teaching | | | | 12 | Determination of calcium and
magnesium by complexometric titration | Book | Black board
teaching | | | | 10 | Presentation | | | Group seminar presentations | 2. | | 11 | Water sampling methods | Book | Black board
teaching | | |-------|--|-------------------------|-------------------------|----------| | 12-13 | Water pollution and its sources | Book, video
tutorial | Black board
teaching | | | 14-15 | Water purification methods | Book | Black board
teaching | | | 16-17 | Water analysis, determination of acidity,
alkalinity and dissolved oxygen | Book | Black board
teaching | MCO/Quiz | | 18 | Test | | | MCQ/Quiz | Teaching Plan for the Session: 2022-2023 Name of the Teacher: Dr Rupam Sarma Department: Chemistry Paper Name: Organic Chemistry-II Learning Objectives: Semester: III - 1. To apprise students about different classes of organic compounds, including halogenated hydrocarbons, alcohols, phenols etc. - 2. To learn and differentiate between various organic functional groups. | Sl. No
of
Lecture | Topic/ Subtopic | Learning Resources | Mode of
Teaching
& ICT
Tools | Experiential /
Participating
Learning Used | Mode of
Assessment
for CIE | |-------------------------|--|---|---------------------------------------|--|----------------------------------| | 1 | Nucleophilic additions, Nucleophilic addition-elimination reactions with ammonia derivatives with mechanism. | 1. Morrison, R. T. &
Boyd, R. N. Organic
Chemistry, Dorling | Blackboard | students | Home
assignments | | 2 | Mechanisms of Aldol and Benzoin condensation. | Kindersley (India) Pvt.
Ltd. (Pearson | | | 138 433 | | 3-4 | Knoevenagel condensation, Claisan-Schmidt, Perkin,
Cannizzaro and Wittig reaction. | Education). | | | | | 5-6 | Knoevenagel condensation, Claisan-Schmidt, Perkin,
Cannizzaro and Wittig reaction. | 2. Finar, I. L. Organic
Chemistry (Volume 1), | | | | | 7-8 | α-substitution reactions, oxidations and reductions (Clemmensen, Wolff-Kishner, LiAlH4,NaBH4, MPV, PDC and PGC). | Dorling Kindersley
(India) Pvt. Ltd.
(Pearson Education).
3. Graham Solomons,
T.W. Organic
Chemistry, John Wiley | | | | | 9 | Addition reactions of unsaturated carbonyl compounds:
Michael addition. | | | | | | 10-12 | Active methylene compounds: Keto-enol tautomerism. Preparation and synthetic applications of diethyl malonate | | | | | | | and ethyl acetoacetate. | & Sons, Inc. | | |-------|--|---|--| | 13-14 | Preparation, physical properties and reactions of
monocarboxylic acids: Typical reactions of dicarboxylic
acids. | 4. Clayden, J., Greeves,
N. & Warren, S. | | | 15-16 | hydroxy acids and unsaturated acids: succinic/phthalic,
lactic, malic, tartaric, citric, maleic and fumaric acids. | Organic Chemistry,
Second edition, Oxford
University Press, 2012. | | | 17-19 | Preparation and reactions of acid chlorides, anhydrides, esters and amides. | 5. Smith, J. G. Organic | | | 20-22 | Comparative study of nucleophilic sustitution at acyl
group -Mechanism of acidic and alkaline hydrolysis of
esters. | Chemistry, Tata McGraw-Hill Publishing Company | | | 23-24 | Claisen condensation, Dieckmann and Reformatsky
reactions, Hofmannbromamide degradation and Curtius
rearrangeolysis. | Limited. | | | 25-28 | Preparation and reactions of thiols, thioethers and sulphonic acids. | | | Teaching Plan for the Session: 2022-2023 Name of the Teacher: Dr Rupam Sarma Department: Chemistry Paper Name: Organic Chemistry-IV Learning Objectives: Semester: V Paper Code: CHE-HC-5016 To enable the students to explain/describe the important features of nucleic acids, amino acids and enzymes and develop their ability to examine their properties and applications. | Sl. No
of
Lecture | Topic/ Subtopic | Learning Resources | Mode of
Teaching
& ICT
Tools | Experiential /
Participating
Learning Used | Mode of
Assessment
for CIE | |-------------------------|--|---|---------------------------------------|--|----------------------------------| | 1-2 | Introduction, classification and characteristics of enzymes. Salient features of active site of enzymes. | 1. Berg, J.M.,
Tymoczko, J.L. and
Stryer, L. (2006) | Blackboard | rd Seminar by students | Home
assignments | | 3-4 | Mechanism of enzyme action (taking trypsin as example). | Biochemistry, VIth
Edition, W.H. Freeman | | | | | 5-6 | factors affecting enzyme action, coenzymes and cofactors and their role in biological reactions. | and Co. 2. Nelson, D.L., Cox, M.M. and Lehninger, A.L. (2009) Principles of Biochemistry. IV Edition. W.H. Freeman | | | | | 7 | specificity of enzyme action (including stereospecificity). | | | | | | 8-10 | enzyme inhibitors and their importance, phenomenon of
inhibition (competitive, uncompetitive and non- | | | | | | | competitive inhibition including allosteric inhibition). | and Co. | | | |-------
---|---|--|-----| | 11-12 | Introduction to oils and fats; common fatty acids present
in oils and fats, Hydrogenntion of fats and oils,
saponification value, acid value, iodine number, rancidity. | 3. Murray, R.K.,
Granner, D.K., Mayes,
P.A. and Rodwell,
V.W. (2009) Harper's
Illustrated
Biochemistry. XXVIII
edition. Lange Medical | | | | 13-14 | Cells obtain energy by the oxidation of foodstuff (organic
molecules). Introduction to metabolism (catabolism,
anabolism). | | | | | 16-18 | ATP: The universal currency of cellular energy, ATP
hydrolysis and free energy change. Agents for transfer of
electrons in biological redox systems: NAD+, FAD. | Books/ McGraw-Hill | | | | 19-22 | Conversion of food to energy: Outline of catabolic
pathways of carbohydrate- glycolysis, fermentation,
Krebs cycle. | | | F 2 | | 23-25 | Overview of catabolic pathways of fat and protein.
Interrelationship in the metabolic pathways of protein, fat
and carbohydrate. | | | | | 26-27 | Calorific value of food, standard calorie content of food types. | | | | | 28-31 | Classification, structure and therapeutic uses of
antipyretics: Paracetamol (with synthesis). Analgesics:
Ibuprofen (with synthesis), Antimalarials: Chloroquine
(with synthesis). | | | | | 32-35 | Anelementary treatment of Antibiotics and detailed study
of chloramphenicol, Medicinal values of curcumin
(turmeric), azadirachtin (neem), vitamin C and antacid
(ranitidine). | | | | Teaching Plan for the Session: 2022-2023 Name of the Teacher: Dr Rupam Sarma Department: Chemistry Paper Name: Polymer Chemistry Learning Objectives: try Semester: V - 1. To introduce the theory and applications of polymer chemistry to the students. - 2. Introduction of some industrially important polymers and conducting polymers. | Sl. No
of
Lecture | Topic/ Subtopic | Learning Resources | Mode of
Teaching
& ICT
Tools | Experiential /
Participating
Learning Used | Mode of
Assessment
for CIE | |-------------------------|--|---|---------------------------------------|--|----------------------------------| | 1 | Introduction and history of polymeric materials: Different schemes of classification of polymers, Polymer nomenclature. | Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. | Blackboard | d Seminar by students | Home
assignments | | 2 | Molecular forces and chemical bonding in polymers,
Texture of Polymers. | Ltd.
(Pearson Education). | | | | | 3-4 | Criteria for synthetic polymer formation, classification of polymerization processes, Relationships between functionality. | 2. Finar, I. L. Organic
Chemistry (Volume 1),
Dorling Kindersley
(India) Pvt. Ltd.
(Pearson
Education).
3. Eliel, E. L. & Wilen,
S. H. Stereochemistry | | | | | 5-7 | extent of reaction and degree of polymerization. Bifunctional systems, Poly-functional systems | | | | | | 8-11 | Mechanism and kinetics of step growth, radical chain | | | | | | 12-15 | growth, ionic chain (both cationic and anionic) and coordination polymerizations. Mechanism and kinetics of copolymerization, polymerization techniques. | of Organic Compounds,
Wiley: London, 1994. 4. Nasipuri, D.
Stereochemistry of
Organic Compounds, | | |-------|--|--|--| | 16-20 | Determination of crystalline melting point and degree of
crystallinity, Morphology of crystalline polymers, Factors
affecting crystalline melting point. | 5. Kalsi, P. S.
Stereochemistry
Conformation and | | | 21-23 | Determination of molecular weight of polymers (Mn,
Mw, etc) by end group analysis. | Mechanism, New Age
International, 2005 | | | 24-26 | viscometry, light scattering and osmotic pressure
methods. Molecular weight distribution and its
significance. Polydispersity index. | | | Teaching Plan for the Session: 2022-2023 Name of the Teacher: Dr Rupam Sarma Department: Chemistry Paper Name: Organic Chemistry-I Learning Objectives: Semester: II - 1. To apprise students with introduction to basic organic concepts. - 2. To enable students to learn and analyse different classes of organic compounds, their reactivities and mechanisms. | Sl. No
of
Lecture | Topic/ Subtopic | Learning Resources | Mode of
Teaching
& ICT
Tools | Experiential /
Participating
Learning Used | Mode of
Assessment
for CIE | |-------------------------|--|---|---------------------------------------|--|----------------------------------| | 1 | Organic Compounds: Classification, and Nomenclature. | 1. Morrison, R. N. &
Boyd, R. N. Organic | Blackboard | Seminar by students | Home
assignments | | 2 | Hybridization, Shapes of molecules, Influence of hybridization on bond properties. | Chemistry, Dorling
Kindersley (India) Pvt. | | | | | 3 | Electronic Displacements: Inductive, electromeric, resonance and mesomeric effects. | Ltd.
(Pearson Education). | | | | | 4 | hyperconjugation and their applications; Dipole moment;
Organic acids and bases; their relative strength. | 2. Finar, I. L. Organic | | | | | 5 | Homolytic and Heterolytic fission with suitable examples.
Curly arrow rules, formal charges. | Chemistry (Volume 1),
Dorling Kindersley | | | | | 6 | Electrophiles and Nucleophiles; Nucleophlicity and basicity. | (India) Pvt. Ltd.
(Pearson
Education).
3. Eliel, E. L. & Wilen,
S. H. Stereochemistry | | | | | 7 | Types, shape and their relative stability of Carbocations,
Carbanions, Free radicals and Carbenes. | | | | | | 8 | Introduction to types of organic reactions and their
mechanism: Addition, Elimination and Substitution | | | | | | | reactions. | of Organic Compounds, | | | |-------|--|---|------------------------|-------| | 9-10 | Chemistry of alkanes: Formation of alkanes, Wurtz
Reaction, Wurtz-Fittig Reactions. | Wiley: London, 1994.
4. Nasipuri, D. | | | | 11-12 | Free radical substitutions: Halogenation -relative reactivity and selectivity. | Stereochemistry of
Organic Compounds, | | | | 13-16 | Formation of alkenes and alkynes by elimination reactions, Mechanism of E1, E2, E1cb reactions. Saytzeff and Hofmann eliminations. | Wiley Eastern Limited. | Wiley Eastern Limited. | le le | | 17-20 | Reactions of alkenes: Electrophilic additions and their
mechanisms (Markownikoff/ Anti-Markownikoff
addition), mechanism of oxymercuration-demercuration,
hydroborationoxidation, ozonolysis. | Stereochemistry Conformation and Mechanism, New Age International, 2005 | | | | 21-24 | reduction (catalytic and chemical), syn and
antihydroxylation (oxidation). 1,2-and 1,4-addition
reactions in conjugated dienes and, DielsAlder reaction;
Allylic and benzylic bromination and mechanism, e.g.
propene, 1-butene, toluene, ethyl benzene. | | | | | 25-28 | Reactions of alkynes: Acidity, Electrophilic and
Nucleophilic additions. Hydration to form carbonyl
compounds, Alkylation of terminal alkynes. | | | | | 28-32 | Types of cycloalkanes and their relative stability, Baeyer
strain theory, Conformation analysis of alkanes: Relative
stability: Energy diagrams of cyclohexane: Chair, Boat
and Twist boat forms; Relative stability with energy
diagrams. | | | | Teaching Plan for the Session: 2022-2023 Name of the Teacher: Dr Rupam Sarma Department: Chemistry Paper Name: Organic Chemistry-III Learning Objectives: Semester: IV - 1. To introduce students to different classes of N-based compounds. - 2. To study alkaloids and terpenoids and their potential application. | Sl. No
of
Lecture | Topic/ Subtopic | Learning Resources | Mode of
Teaching
& ICT
Tools | Experiential /
Participating
Learning Used | Mode of
Assessment
for CIE | |-------------------------|--|--|---------------------------------------|--|----------------------------------| | 1-4 | Reactions of
naphthalene phenanthrene and anthracene
Structure, Preparation and structure. | 1. Morrison, R. T. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education). 2. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education). 3. Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the | Blackboard | d Seminar by students | Home
assignments | | 5-8 | elucidation and important derivatives of naphthalene and
anthracene; Polynuclear hydrocarbons. | | | | | | 9-12 | Classification and nomenclature, Structure, aromaticity in 5-numbered and 6-membered rings containing one heteroatom. | | | | | | 13-18 | Synthesis, reactions and mechanism of substitution reactions of: Furan, Pyrrole (Paal-Knorr synthesis, Knorr pyrrole synthesis, Hantzsch synthesis), Thiophene, Pyridine (Hantzsch synthesis), Pyrimidine. Indole: Fischer indole synthesis and Madelung synthesis). | | | | | | 19-24 | Quinoline and isoquinoline: Skraup synthesis,
Friedlander's synthesis, Knorr quinoline synthesis, | | | | | | | Doebner- Miller synthesis, Bischler-Napieralski reaction,
Pictet-Spengler reaction, Pomeranz-Fritsch reaction. | Chemistry of Natural
Products), Dorling
Kindersley (India) Pvt. | | |-------|---|--|--| | 25-27 | Natural occurrence, General structural features, Isolation
and their physiological action Hoffmann's exhaustive
methylation, Emde's modification. | Ltd. (Pearson
Education). | | | 28-30 | Structure elucidation and synthesis of Nicotine. Medicinal
importance of Nicotine, Hygrine, Quinine, Morphine,
Cocaine, and Reserpine. | 4. Graham Solomons,
T.W. Organic
Chemistry, John Wiley
& Sons, Inc. | | | 31-32 | Occurrence, classification, isoprene rule; Elucidation of structure and synthesis of Citral, Neral and α-terpineol. | 5. Kalsi, P. S. Textbook
of Organic Chemistry
1st Ed., New Age
International (P) Ltd.
Pub. | | Teaching Plan for the Session: 2022-2023 Name of the Teacher: Dr Rupam Sarma Department: Chemistry Paper Name: Organic Chemistry-V Learning Objectives: Semester: VI - 1. To learn about the different spectroscopic techniques and their applications in organic chemistry. - 2. Students shall be apprised with carbohydrate chemistry, dyes and polymers and their structure, reactivity and chemical properties. | Sl. No
of
Lecture | Topic/ Subtopic | Learning Resources | Mode of
Teaching
& ICT
Tools | Experiential /
Participating
Learning Used | Mode of
Assessment
for CIE | |-------------------------|--|---|---------------------------------------|--|----------------------------------| | 1-2 | Introduction to absorption and emission spectroscopy. | 1. Banwell, C. N. & Mc.Cash, E. M. Fundamentals of Molecular Spectroscopy, 4th Edition, McGraw Hill. 2. Pavia, Lampman, Kriz & Vyvyan, Introduction to Spectroscopy, 5th Edition, CENGAGE Learing. 3. Silverstein, R. M.; | Blackboard | Seminar by students | Home
assignments | | 3-5 | UV Spectroscopy: Types of electronic transitions, λmax,
Chromophores and Auxochromes, Bathochromic and
Hypsochromic shifts. | | | | | | 6-8 | Intensity of absorption; Application of Woodward Rules for calculation of λmax for the following systems: α,β unsaturated aldehydes, ketones, carboxylic acids and esters; Conjugated dienes: alicyclic, homoannular and heteroannular; Extended conjugated systems (aldehydes, ketones and dienes). | | | | | | 9 | distinction between cis and trans isomers. | | | | | | 10-13 | IR Spectroscopy: Fundamental and non-fundamental
molecular vibrations; IR absorption positions of O, N and
S containing functional groups. | | | | | | 14 | Effect of H-bonding, conjugation. | Webster, F. X.; Kiemle,
D. J. & Bryce, D. L. | | |-------|---|---|--| | 15 | resonance and ring size on IR absorptions. | Spectrometric Identification of | | | 16 | Fingerprint region and its significance; application in
functional group analysis. | Organic Compounds,
8th Edition, Wiley. | | | 17 | NMR Spectroscopy: Basic principles of Proton Magnetic
Resonance. | 4. Kemp, W. Organic | | | 18 | chemical shift and factors influencing it. | Spectroscopy, Palgrave | | | 19 | Spin – Spin coupling and coupling constant; Anisotropic effects in alkene, alkyne, aldehydes and aromatics. | | | | 20 | Interpetation of NMR spectra of simple compounds. | | | | 21-22 | Electron Spin Resonance (ESR) spectroscopy: Its
principle, hyperfine structure, ESR of simple radicals. | | | | 23-24 | Applications of IR, UV and NMR for identification of
simple organic and inorganic molecules. | | | Teaching Plan for the Session: 2023-2024 Name of the Teacher: Dr Rupam Sarma Department: Chemistry Paper Name: Chemistry-I Learning Objectives: Semester: I Paper Code: CHE-0100104 - 1. To apprise students with introduction to basic organic concepts. - 2. To enable students to learn and analyse representation of organic compounds. | Sl. No
of
Lecture | Topic/ Subtopic | Learning Resources | Mode of
Teaching
& ICT
Tools | Experiential /
Participating
Learning Used | Mode of
Assessment
for CIE | |-------------------------|--|---|---------------------------------------|--|----------------------------------| | 1 | Representation of organic molecules in 2D and 3D. | 1. Eliel, E. L. & Wilen,
S. H. Stereochemistry | Blackboard | Seminar by students | Home
assignments | | 2 | Fischer, Newmann and Sawhorse projection formula. | of Organic Compounds,
Wiley: London, 1994. | | | | | 3 | Geometrical isomerism. Cis-trans, E/Z notaions. | 2. Nasipuri, D. | | | | | 4 | Concept of chirarity. Enantiomers and diastereomers. | Stereochemistry of
Organic Compounds, | | | | | 5 | Conformation and configuration, barriers and rotation. | Wiley Eastern Limited. | | |-------|--|--|--| | 6-7 | conformational analysis of ethane, butane and cyclohexane. | 3. Kalsi, P. S.
Stereochemistry
Conformation and | | | 8-9 | Concept of electrophiles and nucleophiles. | Mechanism, New Age
International, 2005 | | | 10-11 | Inductive effect, resonance, conjugation and delocalisation. | International, 2000 | | Teaching Plan for the Session: 2023-2024 Name of the Teacher: Dr Rupam Sarma Department: Chemistry Paper Name: Organic Chemistry-II Learning Objectives: Semester: III Paper Code: CHE-HC-3026 - 1. To apprise students about different classes of organic compounds, including halogenated hydrocarbons, alcohols, phenols etc. - 2. To learn and differentiate between various organic functional groups. | Sl. No
of
Lecture | Topic/ Subtopic | Learning Resources | Mode of
Teaching
& ICT
Tools | Experiential /
Participating
Learning Used | Mode of
Assessment
for CIE | |-------------------------|--|---|---------------------------------------|--|----------------------------------| | 1 | Nucleophilic additions, Nucleophilic addition-elimination reactions with ammonia derivatives with mechanism. | 1. Morrison, R. T. &
Boyd, R. N. Organic
Chemistry, Dorling | Blackboard | Seminar by
students | Home
assignments | | 2 | Mechanisms of Aldol and Benzoin condensation. | Kindersley (India) Pvt.
Ltd. (Pearson | | | | | 3-4 | Knoevenagel condensation, Claisan-Schmidt, Perkin,
Cannizzaro and Wittig reaction. | Education). | | | | | 5-6 | Knoevenagel condensation, Claisan-Schmidt, Perkin,
Cannizzaro and Wittig reaction. | 2. Finar, I. L. Organic
Chemistry (Volume 1), | | | | | 7-8 | α-substitution reactions, oxidations and reductions (Clemmensen, Wolff-Kishner, LiAlH4,NaBH4, MPV, PDC and PGC). | Dorling Kindersley
(India) Pvt. Ltd.
(Pearson Education). | | | | | 9 | Addition reactions of unsaturated carbonyl compounds: | 3. Graham Solomons, | | | | | 10-12 | Active methylene compounds: Keto-enol tautomerism. Preparation and synthetic applications of diethyl malonate | T.W. Organic
Chemistry, John Wiley | | | | | | and ethyl acetoacetate. | & Sons, Inc. | | |-------|--|---|--| | 13-14 | Preparation, physical properties and reactions of
monocarboxylic acids: Typical reactions of dicarboxylic
acids. | 4. Clayden, J., Greeves,
N. & Warren, S.
Organic Chemistry, | | | 15-16 | hydroxy acids and unsaturated acids: succinic/phthalic,
lactic, malic, tartaric, citric, maleic and fumaric acids. | Second
edition, Oxford
University Press, 2012. | | | 17-19 | Preparation and reactions of acid chlorides, anhydrides, esters and amides. | 5. Smith, J. G. Organic | | | 20-22 | Comparative study of nucleophilic sustitution at acyl
group -Mechanism of acidic and alkaline hydrolysis of
esters. | Chemistry, Tata
McGraw-Hill
Publishing Company | | | 23-24 | Claisen condensation, Dieckmann and Reformatsky
reactions, Hofmannbromamide degradation and Curtius
rearrangeolysis. | Limited. | | | 25-28 | Preparation and reactions of thiols, thioethers and sulphonic acids. | | | Teaching Plan for the Session: 2023-2024 Name of the Teacher: Dr Rupam Sarma Department: Chemistry Paper Name: Organic Chemistry-IV Learning Objectives: Semester: V Paper Code: CHE-HC-5016 To enable the students to explain/describe the important features of nucleic acids, amino acids and enzymes and develop their ability to examine their properties and applications. | Sl. No
of
Lecture | Topic/ Subtopic | Learning Resources | Mode of
Teaching
& ICT
Tools | Experiential /
Participating
Learning Used | Mode of
Assessment
for CIE | |-------------------------|--|---|---------------------------------------|--|----------------------------------| | 1-2 | Introduction, classification and characteristics of enzymes. Salient features of active site of enzymes. | 1. Berg, J.M.,
Tymoczko, J.L. and
Stryer, L. (2006) | Blackboard | Seminar by
students | Home
assignments | | 3-4 | Mechanism of enzyme action (taking trypsin as example). | Biochemistry. VIth
Edition. W.H. Freeman | | | | | 5-6 | factors affecting enzyme action, coenzymes and cofactors and their role in biological reactions. | and Co. 2. Nelson, D.L., Cox, | | | | | 7 | specificity of enzyme action (including stereospecificity). | M.M. and Lehninger,
A.L. (2009) Principles | | | | | 8-10 | enzyme inhibitors and their importance, phenomenon of
inhibition (competitive, uncompetitive and non- | of Biochemistry. IV
Edition. W.H. Freeman | | | | | | competitive inhibition including allosteric inhibition). | and Co. | |-------|---|--| | 11-12 | Introduction to oils and fats; common fatty acids present
in oils and fats, Hydrogenntion of fats and oils,
saponification value, acid value, iodine number, rancidity. | 3. Murray, R.K.,
Granner, D.K., Mayes,
P.A. and Rodwell,
V.W. (2009) Harper's | | 13-14 | Cells obtain energy by the oxidation of foodstuff (organic
molecules). Introduction to metabolism (catabolism,
anabolism). | Illustrated
Biochemistry. XXVIII
edition. Lange Medical | | 16-18 | ATP: The universal currency of cellular energy, ATP hydrolysis and free energy change. Agents for transfer of electrons in biological redox systems: NAD+, FAD. | Books/ McGraw-Hill | | 19-22 | Conversion of food to energy: Outline of catabolic
pathways of carbohydrate- glycolysis, fermentation,
Krebs cycle. | | | 23-25 | Overview of catabolic pathways of fat and protein. Interrelationship in the metabolic pathways of protein, fat and carbohydrate. | | | 26-27 | Calorific value of food, standard calorie content of food types. | | | 28-31 | Classification, structure and therapeutic uses of antipyretics: Paracetamol (with synthesis). Analgesics: Ibuprofen (with synthesis), Antimalarials: Chloroquine (with synthesis). | | | 32-35 | Anelementary treatment of Antibiotics and detailed study
of chloramphenicol, Medicinal values of curcumin
(turmeric), azadirachtin (neem), vitamin C and antacid
(ranitidine). | | Teaching Plan for the Session: 2023-2024 Name of the Teacher: Dr Rupam Sarma Department: Chemistry Paper Name: Polymer Chemistry Learning Objectives: istry Semester: V Paper Code: CHE-HE-5046 - 1. To introduce the theory and applications of polymer chemistry to the students. - 2. Introduction of some industrially important polymers and conducting polymers. | Sl. No
of
Lecture | Topic/ Subtopic | Learning Resources | Mode of
Teaching
& ICT
Tools | Experiential /
Participating
Learning Used | Mode of
Assessment
for CIE | |-------------------------|--|--|---------------------------------------|--|----------------------------------| | 1 | Introduction and history of polymeric materials: Different schemes of classification of polymers, Polymer nomenclature. | Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. | Blackboard | Seminar by
students | Home
assignments | | 2 | Molecular forces and chemical bonding in polymers,
Texture of Polymers. | Ltd.
(Pearson Education).
2. Finar, I. L. Organic | | | | | 3-4 | Criteria for synthetic polymer formation, classification of polymerization processes, Relationships between functionality. | Chemistry (Volume 1),
Dorling Kindersley
(India) Pvt. Ltd.
(Pearson | | | | | 5-7 | extent of reaction and degree of polymerization. Bifunctional systems, Poly-functional systems | Education). | | | | | 8-11 | Mechanism and kinetics of step growth, radical chain | 3. Eliel, E. L. & Wilen,
S. H. Stereochemistry | | | | | | growth, ionic chain (both cationic and anionic) and coordination polymerizations. | of Organic Compounds,
Wiley: London, 1994. | | |-------|--|--|--| | 12-15 | Mechanism and kinetics of copolymerization, polymerization techniques. | 4. Nasipuri, D. Stereochemistry of Organic Compounds, | | | 16-20 | Determination of crystalline melting point and degree of
crystallinity, Morphology of crystalline polymers, Factors
affecting crystalline melting point. | 5. Kalsi, P. S.
Stereochemistry
Conformation and | | | 21-23 | Determination of molecular weight of polymers (Mn,
Mw, etc) by end group analysis. | Mechanism, New Age
International, 2005 | | | 24-26 | viscometry, light scattering and osmotic pressure
methods. Molecular weight distribution and its
significance. Polydispersity index. | | | 9 Jane Signature of the Teacher Teaching Plan for the Session: 2022-23 Name of the Teacher: Dr. Dhanju Mani Pathak Department: Chemistry Paper Name: Physical Chemistry Semester: I Paper Code: CHE-HC-1026 Learning Objectives: 1. In the molecular and crystal symmetry unit they will be introduced to the elementary idea of symmetry which will be useful to understand solid state chemistry and group theory in some higher courses. 2. In solid state unit the students will learn the basic solid state chemistry application of x-ray crystallography for the determination of some very simple crystal structures. 3. The students will also learn another important topic "ionic equilibria" which contains pH, buffer solution, hydrolysis etc in this course. | SI. No of
Lecture | Γορίc/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of Assessment for CIE (Continuous Internal Evaluation) | |----------------------|---|----------------------------|------------------------------------|--|---| | 1 | Nature of the solid state, law of constancy of
interfacial angles, law of rational indices | 8. Paula, J. de | Black-
board/ICT | Student's
Seminar | Unit test
for
Home Assignan | | 2 | Miller indices | Atkin's | | | | | 3,4 | X-ray diffraction , Bragg's law, a simple account of rotating crystal method and | Physical
Chemistry Ed., | | | | | | powder pattern method. | Oxford | | | |----------|--|--|-----------------|--| | 5,6 | Analysis of powder diffraction patterns of NaCl, CsCl and KCl. | University Press. | | | | 7,8 | Defects in crystals | 2. Puri, B. R.; | | | | 9,10 | Liquid crystals (Introductory idea) | Sharma, L. R.; | | | | 11 | Doubt clearance | Pathania, M. S. Principles of | | | | 12 | Strong, moderate and weak electrolytes,
degree of ionization | Physical | | | | 13 | factors affecting degree of ionization,
ionization constant and ionic product of
water. | Chemistry,
Vishal | | | | 14 | Ionization of weak acids and bases,pH scale | Publishing Co. | | | | 15 | common ion effect | 3. Kapoor, K. | Home assignment | | | 16,17,18 | Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. | L. A. Textbook of Physical Chemistry | | | | 19 | Buffer solutions; derivation of Henderson equation and its applications | (Volume 1)
McGraw Hill | | | | 20 | buffer 11 capacity,buffer range, buffer action and applications of buffers in analytical chemistry and biochemical processes in the human body | Education; Sixth edition 4. e-PG pathsala & other internet | | | | 21 | Solubility and solubility product of sparingly | resources | | | |
-----------|---|-----------|---|-------------------------|---------| | | soluble salts | | - | | | | 22 | Sessional examination | | | | | | 24 | applications of solubility product principle | | | Land Care Control | marcy S | | 25 | Qualitative treatment of acid – base titration curves (calculation of pH at various stages) | | | | | | 26 | Theory of acid-base indicators; selection of indicators and their limitations. | | | | | | 27 | Multistage equilibria in polyelectrolyte systems | | | | | | 28 | hydrolysis and hydrolysis constants | | | | | | 29,30,31, | dissociation constants of mono-, di-and | | | | | | 32 | triprotic acids (exact treatment). | | | | | | 33 | Question answer discussion | | | | | | 34,35 | | | | Seminar presentation by | | Teaching Plan for the Session: 2022-23 Name of the Teacher: Dr. Dhanju Mani Pathak Department: Chemistry Semester: III Paper Name: Physical Chemistry Paper Code: CHE-HC-3036 Learning Objectives: 1. The students are expected to learn phase rule and its application in some specific systems. 2. The students are expected to learn systems having Eutectic point, congruent m.p, incongruent mp, immscible liquid solution, association and dissociation of solutes in presence of solvents etc. 3. The students will be able to understand different types of surface adsorption processes | Sl. No of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |----------------------|---|--|------------------------------------|--|----------------------------------| | 1,2 | Concept of Phase, components, degrees of freedom | 1.Puri, B. R.;
Sharma, L. R.; | Black Board | | Written
examination | | 3,4 | Gibbs Phase Rule & its Derivation for
Reactive and non reactive system | Pathania, M. S. Principles of Physical | | | | | | | Chemistry, | | |-----|--|------------------|--| | | | Vishal | | | | | Publishing Co.; | | | | | 47th Ed. | | | | | 2. Kapoor, K. L. | | | | THE PARTY OF P | A Textbook of | | | | | Physical | | | | | Chemistry | | | | | (Volume 5) | | | | | McGraw Hill | | | | | Education; 5th | | | | | edition | | | | | 3.Peter Atkins | | | | | & Julio De | | | | | Paula, Physical | | | | | Chemistry 9th | | | | | Ed., Oxford | | | | | University | | | | | Press. | | | 5 | Construction of Phase diagram | | | | 6,7 | Clayperon equation, Clasius Clayperon | | | Equation and its application Phase diagram of One Component System, Water System Phase diagram of Sulphur System Phase rule and phase diagram for two 10 component system Systems having eutectic points 11 Systems having congruent melting points 12,13 Systems having incongruent melting points 14,15 Solid solution 16 Seminar Presentation Adsorption, types of adsorption 17 Factors affecting adsorption, effect of 18,19 pressure on adsorption, Freudlich adsorption isotherm Adsorption isotherms 20 Langmuir Adsorption Isotherm 21 Seminar Presentation Partially miscible liquid solution, Critical 22 Solution Temperature | 23 | Solutions having upper critical solution
temperature, solutions having lower solution
temperature | |----------|---| | 24 | Solutions having upper & lower solution temperature | | 25,26,27 | Distribution coefficient, Nernst distribution
law and its application | | 28,29,30 | Doubt clearing and question discussion | | | | Teaching Plan for the Session: 2022-23 Name of the Teacher: Dr. Dhanju Mani Pathak Department: Chemistry Semester: V Paper Name: Physical Chemistry Paper Code: CHE-HC-5026 Learning Objectives: 1. The aim of this course is to introduce the students with three important areas- quantum chemistry, molecular spectroscopy and photochemistry. 2. In quantum chemistry unit the students will be taught the postulates of quantum mechanics and the application of quantum mechanical ideas in some simple systems such as particle in a box, rigid rotor, simple harmonic oscillator etc. 3. Students are expected to understand the application of quantum mechanics in some simple chemical systems such as hydrogen atom or hydrogen like ions. The students will also learn chemical bonding in some simple molecular systems | Sl. No of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |----------------------|---|-----------------------|------------------------------------|--|----------------------------------| | 1,2,3 | Background of quantum chemistry | 1. Physical | Black Board | | | | 4 | Postulates of quantum mechanics, | Chemistry by | | | | | 5,6 | quantum mechanical operators | H.K Choudhury | | 11 - 17 - 17 - 17 - 17 | | | 7 | Schrödinger equation and its application to | 2. Physical | | | | | | free particle | Chemistry by | | |----------|--|---|-----------------| | 3,9 | "particle-in-a-box" (rigorous treatment),
quantization of energy levels, zero-point
energy | Puri, Sarma, 3. Quantum | | | 10,11,12 | two and three dimensional boxes, separation of variables, degeneracy. | Chemistry by Levine | | | 13,14 | Qualitative treatment of simple harmonic oscillator model of vibrational motion: Setting up of Schrödinger equation and discussion of solution and wavefunctions. Vibrational energy of diatomic molecules and zero-point energy. | 4. Banwell, C. N. & McCash, E. M. | | | 15 | Angular momentum: Commutation rules,
quantization of square of total angular
momentum and z-component. | of Molecular | | | 16,17 | Rigid rotator model of rotation of diatomic molecule. Schrödinger equation, transformation to spherical polar coordinates. Separation of variables. Spherical harmonics. Discussion of solution. | Spectroscopy 4th Ed. Tata | | | 18 | | McGraw-Hill: | Home assignment | | 19,20,21 | Qualitative treatment of hydrogen atom and
hydrogen-like ions: setting up of Schrödinger
equation in spherical polar coordinates,
radial part, quantization of energy (only final
energy expression). Average and most
probable distances of electron from nucleus. | New Delhi. 5. Kapoor, K. L. A Textbook of | | | 22,23,24 | Setting up of Schrödinger equation for
many-electron atoms (He, Li). Need for
approximation methods. Statement of
variation theorem and application to simple
systems (particle-in-a-box, harmonic
oscillator, hydrogen atom). | Physical Chemistry (Volume 4) | | | 25 | Chemical bonding: Covalent bonding,
valence bond and molecular orbital
approaches, | McGraw Hill
Education; 5th | | | |-------|--|--|---|--| | 26 | LCAO-MO treatment of H2+. Bonding and
antibonding orbitals. Qualitative extension
to H2 | edition. | | | | 27 | Comparison of LCAO-MO and VB treatments of H2 (only wavefunctions, detailed solution not required) and their limitations. Refinements of the two approaches (Configuration Interaction for MO, ionic terms
in VB) | 6. Sen, B. K. Quantum Chemistry- Including | | | | 28,29 | Qualitative description of LCAO-MO
treatment of homonuclear and
heteronuclear diatomic molecules (HF, LiH). | Spectroscopy, | | | | 30 | Localised and non-localised molecular
orbitals treatment of triatomic (BeH2, H2O)
molecules. | Kalyani
Publishers; 4th | | | | 31 | Qualitative MO theory and its application to
AH2 type molecules | edition | | | | 32. | Question Answer discussion | 7.e-PG pathsala | | | | 33. | Introduction of Photochemistry,
Characteristics of electromagnetic radiation, | and other | | | | 34 | Lambert-Beer's law and its limitations,
physical significance of absorption
coefficients. | internet sources | | | | 35 | Laws, of photochemistry, quantum yield | | | | | 36 | actinometry, examples of low and high quantum yields, | | 5 | | | | | | | | Teaching Plan for the Session: 2023-24 Name of the Teacher: Dr. Dhanju Mani Pathak Department: Chemistry-I Semester: I Paper Name: Chemistry-I (3L-OT-IP) Paper Code: CHE0100104 (Credits: Theory-04, Practicals-02) Theory: 60 Lectures Learning Objectives: 1. On successful completion, students would have clear understanding of the concepts related to atomic and molecular structure, chemical bonding, periodicity and states of matter. 2. Students will be able to work in a chemical laboratory following standard safety protocols. | Sl. No of
Lecture | | Learning Resources | Mode of
Teaching
& ICT
Tools | Experiential /
Participating
Learning
Used | Mode of
Assessment for
CIE | |----------------------|--|---|---------------------------------------|---|----------------------------------| | | Unit VIII: Liquid state | | | | Unit test | | 1 | Qualitative treatment of the structure of the
liquid state | Principles of Physical Chemistry, | Black-
board | | | | 2,3 | Physical properties of liquids: vapour pressure
and its determination | Puri, Sharma,
Pathania, 48 th | | | | | 4,5 | surface tension and its determination, Effect of addition of various solutes on surface tension | Edition, Vishal
Publishing Com. | | | | | 6,7 | Coefficient of viscosity and its determination,
Explanation of cleansing action of detergents | | | | | | | (micelle formation and critical micelle concentration). | Kapoor, K. L. A Textbook of Physical | | | | |-------|--|--|-----|---|--| | 8 | Temperature variation of viscosity of liquids
and comparison with that of gases | Chemistry (Volume 1)
McGraw Hill | | | | | 8 | Effect of addition of various solutes on viscosity | Education; Sixth edition | | | | | | Unit VII: Gaseous state | + | | | | | 9 | Causes of deviation from ideal gas behaviour | 3. e-PG pathsala & other internet | | | | | 10 | compressibility factor, Z, and its variation with pressure and temperature for different gases. | | P T | | | | 11,12 | State variables and equation of states for real gases; van der Waals equation of state, its derivation and application in explaining real gas behaviour. | | | (| | | 13 | Reasons and examples of failure of van der
Waal equation of state | | | | | | 14 | Interpretation of vander Waals pressure-
volume isotherm | | | | | | 15,16 | Critical state and phenomena, mathematical definition and interpretation of critical point, relation between critical constants and vander Waals constants: along with their thermodynamic interpretation. | | | | | | 17 | Introduction to virial equation and virial coefficients, derivation of Boyle temperature. | | | | | | 18 | Doubt Clearing | | | | | Don Teaching Plan for the Session: 2022-23 Name of the Teacher: Dr. Dhanju Mani Pathak Department: Chemistry Paper Name: Physical Chemistry Semester: II Paper Code: CHE-HC-2026 Learning Objectives: 1.The students are expected to learn laws of thermodynamics, thermochemistry, thermodynamic functions, relations between thermodynamic properties, 2. Students will also understand Gibbs Helmholtz equation, Maxwell relations | St. No of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |----------------------|---|---------------------------------|------------------------------------|--|----------------------------------| | 1 | Basics of Thermodynamics | 1. Peter, A. &
Paula, J. de. | Black-
board/ICT | | | | 2 | Intensive and extensive variables; state and path functions | Physical | | 7 | | | 3 | isolated, closed and open systems | Chemistry 9th | | | | | 4 | zeroth law of thermodynamics. | Ed., Oxford | - | | | First law: Concept of heat, q, work, w, University internal energy, U 6 statement of first law; Press. 7,8 enthalpy, H, relation between 2. Levine, I.N. heat capacities Physical 9,10,11, calculations of q, w, U and H for reversible, irreversible and free expansion of gases Chemistry 6th 12 (ideal and van der Waals) under isothermal Ed., Tata Mc and adiabatic conditions. 13 Law of equipartition of energy, degrees of Graw Hill. Home assignments freedom and molecular basis of heat capacities 3. Puri, B. R.; Thermochemistry: Heats of reactions: 14 standard states; enthalpy of formation of Sharma, L. R.; molecules and ions 15 enthalpy of combustion and its applications; Pathania, M. S. 16,17 calculation of bond Principles of energy, bond dissociation energy and resonance energy from thermochemical data Physical effect of temperature (Kirchhoff's equations) 18 and pressure on enthalpy of reactions. Chemistry, 19 Adiabatic flame temperature, explosion Vishal temperature. 20 Doubt clearing class Publishing Co.; 21 Second Law: Concept of entropy; 47th Ed. thermodynamic scale of temperature, statement of the second law of 4. Kapoor, K. L. thermodynamics 22 molecular and statistical interpretation of A Textbook of entropy Calculation of entropy change for reversible 23,24 Physical and irreversible processes. 25 Third Law: Statement of third law, concept Chemistry of residual entropy (Volume 2) calculation of absolute entropy of molecules. 26 | 27,28 R | levision | McGraw Hill | | |---------|----------|------------------|--| | | | Education; | | | | | Sixth edition | | | | | 5. e-pg pathsala | | | | | & other internet | | | | | sources | | Teaching Plan for the Session: 2022-23 Name of the Teacher: Dr. Dhanju Mani Pathak Department: Chemistry Semester: VI Paper Name: INDUSTRIAL CHEMICALS AND ENVIRONMENT Paper Code: CHE-HE-6026 Learning Objectives: 1. Students will learn the contribution of industrial chemicals towards air and water pollution and their effects on living organisms and the environment | Sl. No of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |----------------------|---|---|------------------------------------|--|----------------------------------| | 1 | Ecosystems., | 1.K. De,
Environmental | Black-
board/ICT | | | | 2 | Biogeochemical cycles of carbon | Chemistry: New
Age | DOMESTIC 1 | 10 1 1112 | | | 3 | Biogeochemical cycles of nitrogen | International
Pvt., Ltd, New | | | | | 4 | Biogeochemical cycles of sulphur | Delhi. | | | | | 5 | Air Pollution: Major regions of atmosphere. | 2. S. M.
Khopkar, | | | | | 6 | Chemical and photochemical reactions in atmosphere. | Environmental
Pollution | | | 12-97-19 | | 7,8 | Air pollutants: types, sources, particle size and chemical nature | Analysis: Wiley
Eastern Ltd,
New Delhi. | | | | | 9 | Photochemical smog: its constituents and
photochemistry | 3. Industrial
Chemicals and
Environment by | | | |-------|---|--|----------------------|--| | 10 | Environmental effects of ozone, | Puri , Sharma
Vishal | | | | 11,12 | Major sources of air pollution. | Publishing Co | | | | 13 | Pollution by SO ₂ , CO ₂ , CO, NOx, H ₂ S and other foul smelling gases. | 4. e-PG
Pathsala &
other internet | | | | 14,15 | Methods of estimation of CO, NOx, SOx and control procedures. | sources | | | | 16 | Effects of air pollution on living organisms
and vegetation | | | | | 17 | Greenhouse effect and Global warming, | | Home assignments | | | 18 | Ozone depletion by oxides of nitrogen,
chlorofluorocarbons and Halogens | | | | | 19 | removal of sulphur from coal. | | | | | 20 | Control of particulates. | | | | | 21 | Water Pollution: Hydrological cycle, water resources , aquatic ecosystems, | | | | | 22,23 | Sources and nature of water pollutants, | | | | | 24,25 | Techniques for measuring water pollution | | | | | 26,27 | Impacts of water pollution on hydrological and ecosystems. | | | | | 28,29 | | | Seminar presentation | | Teaching Plan for the Session: 2022-23 Name of the Teacher: Dr. Dhanju Mani Pathak Department: Chemistry Paper Name: Physical Chemistry Semester: IV Paper Code: CHE-HC-4036 Learning Objectives: 1. the students will learn theories of conductance and electrochemistry. 2. Students will also understand some very important topics such as solubility and solubility products, ionic products of water, conductometric titrations etc 3. The
students will also gain basic theoretical idea of electrical & magnetic properties of atoms and molecules. | Sl. No of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |----------------------|---|---------------------------------|------------------------------------|--|----------------------------------| | 1 | Arrhenius theory of electrolytic dissociation. | 1. Atkins, P.W
& Paula, J.D. | Black-
board/ICT | | | | 2,3 | Conductivity, equivalent and molar conductivityand their variation with dilution for weak and strong electrolytes | Physical
Chemistry, 9th | | | | | 4 | Molar conductivity at infinite dilution. | Ed., Oxford | | | | | | University Press | | |-----|------------------|--| | | 2. Puri, B. R.; | | | | Sharma, L. R.; | | | | Pathania, M. S. | | | | Principles of | | | 4 | Physical | | | | Chemistry, | | | | Vishal | | | 120 | Publishing Co.; | | | | 47th Ed. | | | | 3. Kapoor, K. L. | | | | A Textbook of | | | | Physical | | | | Chemistry | | | | (Volume 1) | | | | McGraw Hill | | | | Education; | | | | Sixth edition | | | | 4. e-pg pathsala | | | | & internet | | | | sources | | | 5,6 | Kohlrausch law of independent migration of ions | |----------|--| | 7,8,9,10 | Debye Hückel-Onsager equation, Wien effect, Debye-Falkenhagen effect, Walden's rules | | 11,12 | Ionic velocities, mobilities and their determinations | | 13 | transference numbers and their relation to
ionic mobilities, determination of
transference numbers using Hittorf and
Moving Boundary methods. | | 14 | Applications of conductance measurement:
(i) degree of dissociation of weak
electrolytes, (ii) ionic product of water | | 15,16 | (iii) solubility and solubility product of
sparingly soluble salts, (iv) conductometric
titrations, and (v) hydrolysis constants of
salts. | | 17 | Question answer discussion | | 18 | Basic ideas of electrostatics, Electrostatics of dielectric media | | 19 | Clausius-Mosotti equation, | | 20 | Lorenz-Laurentz equation, | | 21 | Dipole moment and molecular polarizabilities and their measurements. | | 22,23 | Diamagnetism, paramagnetism, magnetic
susceptibility and its measurement,
molecular interpretation. | | 24,25,26 | | Seminar presentation by | | |----------|----------------------|-------------------------|--| | 27,28 | Doubt clearing class | the students | | | | | | | Teaching Plan for the Session: 2022-23 Name of the Teacher: Dr. Dhanju Mani Pathak Department: Chemistry Semester: III Paper Name: CHEMISTRY 3 CHEMICAL ENERGETICS, EQUILIBRIA & FUNCTIONAL ORGANIC CHEMISTRY-I Paper Code: CHE-RC/HG-3016 (Credits: Theory-04, Practicals-02) Theory: 60 Lectures Learning Objectives: 1. After completion of this course the students will able to understand the chemical system from thermodynamic points of view. 2. They will also learn two very important topics in chemistry- chemical equilibrium and ionic equilibrium. 3. In organic chemistry part, the students are expected to learn various classes of organic molecules-alkyl halides, aryl halides, alcohols, phenols, ethers, aldehydes and ketones. | Sl. No of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |----------------------|---|-----------------------|------------------------------------|--|----------------------------------| | No. of Lot | Ionic Equilibria: | 11/1/19 | | | | | 1 | Strong, moderate and weak electrolytes, degree of ionization, | | Black-board | | | | 2 | Factors affecting degree of ionization, ionization constant | | | | | | | Ionic product of water | | | |--------|---|--------|---------------| | | Ionization of weak acids and bases, | | | | | pH scale, common ion effect | | | | ,7,8,9 | Salt hydrolysis-calculation of hydrolysis
constant, degree of hydrolysis and pH for
different salts | | | | 0 | Buffer solutions. | | | | 11 | Solubility and solubility product of sparingly soluble salts | | | | 12 | applications of solubility product principle | C457-A | stion answer | | | Chemical Equilibrium: | | | | 13 | Free energy change in a chemical reaction. | | | | 14,15 | Thermodynamic derivation of the law of chemical equilibrium. | | | | 16 | Distinction between ΔG and ΔGo | | | | 17,18 | Le Chatelier's principle | Homo | e assignments | | 19 | Relationships between Kp, Kc and Kx for reactions involving ideal gases | | | | 20 | | Doub | t Clearing | Teaching Plan for the Session: 2022-23 Name of the Teacher: Dr. Dhanju Mani Pathak Department: Chemistry Semester: IV Paper Name: CHEMISTRY4 SOLUTIONS, PHASE EQUILIBRIUM, CONDUCTANCE, ELECTROCHEMISTRY & FUNCTIONAL GROUP ORGANIC CHEMISTRY Paper Code: CHE- RC/HG-4016 (Credits: Theory-04, Practicals-02) Theory: 60 Lectures Learning Objectives: 1. After completion of this course the students learn solutions, phase rule and its application in specific cases, 2. Students will also learn basics of conductance and electrochemistry. 3. Students will also learn some important topics of organic and biochemistry- carboxylic acids, amines, amino acids, peptides, proteins and carbohydrates. | Sl. No of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |----------------------|---|-----------------------|------------------------------------|--|----------------------------------| | | Phase Equilibrium | | | | 1 1 1 | | 1,2 | Phases, components and degrees of freedom of a system | | Black-board | | | | 3 | criteria of phase equilibrium | - | | | | | 4.5 | Gibbs Phase Rule and its thermodynamic | | | les. | |---------|--|--|----------------|------| | | derivation | | and the second | | | 6 | Derivation of Clausius – Clapeyron equation and its importance in phase equilibria | | | | | 7,8 | Phase diagrams of one-component systems (water and sulphur) | | | | | 9,10,11 | Phase diagrams of two component systems
involving eutectics, congruent and
incongruent melting points (lead-silver,
FeCl3-H2O and Na-K only). | | | | | , I | Teaching Plan for the Session: 2022-23 Name of the Teacher: Dr. Dhanju Mani Pathak Department: Chemistry Semester: V Paper Name: ANALYTICAL METHODS IN CHEMISTRY Paper Code: CHE-RE-5026 (Credits: Theory-04, Practicals-02) Theory: 60 Lectures Learning Objectives: 1.On successful completion students will be have theoretical understanding about choice of various analytical techniques used for qualitative and quantitative characterization of samples. - 2. At the same time through the experiments students will gain hands on experience of the discussed techniques. - 3. This will enable students to take judicious decisions while analyzing different samples. | Sl. No of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |----------------------|---|-----------------------|------------------------------------|--|----------------------------------| | | Electroanalytical methods: | | | | | | 1 | Classification of electroanalytical methods | | Black-board | | | | 2,3 | basic principle of pH metric titration | | | 1100 | | | 4,5 | potentiometric titration | | | | | | 6,7,8 | Conductometric titrations. | | | | | |-------|---|---|---|----------------|---| | 9 | Techniques used for the determination of
equivalence points | | | | | | 10 | Techniques used for the determination of pKa values. | | | | | | | Thermal methods of analysis: | | | | | | 11 | Theory of thermogravimetry (TG) | | | | - | | 12,13 | Basic principle of instrumentation. | | | | - | | 14 | Techniques for quantitative estimation of Ca and Mg from their mixture. | | | | | | 15 | | | | Doubt clearing | | | | | | | | | | | | | _ | | | | | | 6 | | | + | | | | | | | | Signature of the Teacher Teaching Plan for the Session: 2022-23 Name of the Teacher: Dr. Dhanju Mani Pathak Department: Chemistry Paper Name: INDUSTRIAL CHEMICALS AND ENVIRONMENT Semester: VI Paper Code: CHE-RE-6026 (Credits: Theory-04, Practicals-02) Theory: 60 Lectures Learning Objectives: 1. After successful completion of the course, students would have learnt about the manufacture, applications and safe ways of storage and handling gaseous and inorganic industrial chemicals. - 2. Students will get to know about industrial metallurgy and the energy generation industry. - 3. Students will also learn about environmental pollution by various gaseous, liquid wastes and nuclear wastes and their effects on living beings. - 4. Finally, the students will learn about industrial waste management, their safe disposal and the importance of environment friendly "green chemistry" in chemical industry. | SI. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |----------------------|--|-----------------------|------------------------------------|--|----------------------------------| | | Environment and its segments | 4 | | | | | 1,2 | Ecosystems | | Black-board | | | | 3,4 | Biogeochemical cycles of carbon, nitrogen and sulphur. | | | | | | 5 | Air Pollution: Major regions of atmosphere | |-------|--| | 7 | Chemical and photochemical reactions in atmosphere. | | 8 | Air pollutants: types, sources, particle size
and chemical nature | | 9,10 | Major sources of air pollution | | 11 | Photochemical smog: its constituents and photochemistry | | 12 | Environmental effects of ozone | | 13 | Pollution by SO2, CO2, CO, NOx, H2S and other foul smelling gases | | 14,15 | Methods of estimation of CO, NOx, SOx and control procedures. | | 16 | Effects of air pollution on living organisms
and vegetation | | 17 | Greenhouse effect and Global warming | | 18 | Ozone depletion by oxides of nitrogen,
chlorofluorocarbons and Halogens | | 19 | Removal of sulphur from coal. Control of particulates. | | 20 | Water Pollution: Hydrological cycle, water resources, | | 21 | aquatic ecosystems | | 22,23 | Sources and nature of water pollutants, | | 24 | Techniques for measuring water pollution, | | 25 | Impacts of water pollution on hydrological and ecosystems. | Signature of the Teacher Paper Name: Inorganic Chemistry-1. Semester - I Paper Code: CHF- HC-1014 Session: 2018, 2019, 2020, 2021, 2022 | sl no of
ecture | Topic/Subtopic | Learning-
Resources | Mode of
teaching | assessment | |--------------------|--|------------------------|--|------------| | 1 | Atomic Structure: A breief descreibtion on historical development in elucidation of structure of atom. | R.K. Prasad | class lectur
using chalk
and Black | | | 2 | Bolivis theory, reading of Bolivis Orebit, energy of electron of Hatom in Bolivis Orabit | B. K. Sen | | | | 3 | Spectra of H-atom, limitations of Adms theory | | class notes | unit te | | 4 | de-Broglie equation, Heisenbergs uncertainity
Pranciple. Mathematical problems. | | | | | 5 | Operators, wave function ex. Postulates of gruentum mechanics. | | | | | 6, 7 | solution, quantum numbers. | | | | | 8,9 | Radial wave function, readial probability blot, ophercical harmonics, bx, by, bz orbibals | | | | | 10 | shapes of s. p.d. forebitals. Contour boundary & probability diagream. | | - BB | | | 11 | Paulis exclusion preinciple, Hund's roule of maximum multiplicity. | | | | | 12 | Auf bour preinciple and its limitations.
Varciation of orebital energy with
atomic no. | | | | | | | | | | Dr Nabajyet Deka Paper Name: Inorganic Chemistry-I Paper Code: CHE-HC-1014 Semester - 1 Session: 2018, 2019, 2020, 2021, 2022 | ecture | Topic/Sublopic | Learning-
Resources | Mode of
teaching | Mode of
assessment | |--------|--|------------------------|--|-----------------------| | 1 | Chemical Bonding: trens covalent bonding.
Lewis electron dot structure, polarcity of
covalent bond. | Levine
B.K. Sen | class lecture
using chalk
and wark | Home | | 2 | Valence bond theory of covalent bonding | ~ 2 1 | board. | assignment | | 3, 4 | Hybraidisation of atomic orbitals, energitics of hybraidisation, equ. and non equ. hybraid orbitals. Bend's rewe. | J.D. Lee | class notes. | unit test | | 5 | Resonance, resonance energy, resonating strencture. | | | | | 6 | Molecular Orbital Theory of concilent bonding. | | | | | 7. | molecular orbital diagram of some diatomic and simple polyatomic molecules. | | | | | 8 | VSEPR theory, 1p. bp. shapes of some molecules and ions using VSEPR theory. | | | | | 9 | multiple bonding and bond lengths. | | | | | 10. | Covalent characters in ionic compounds.
Fajan's reule. | | | | | 1, | Oxidation - Reduction : Oxidation and reduction reactions, electronic concepts, redox equation. | Molik, Tuli & Madam | | 700 | | | standard electrode potential, outlines of electrochemical cell, electrode potential and its application to inorganic reaction. | | class moles | | | 3 | Preinciple involved in volumetric condysis, redox titration. | | | 33 | Do Nabajyoh Deka. Semesta - III Paper Code: CHE-HC-3014 Session: 2018,2019.2020.2021.2022 | no of | Topic/subtopic | recover | Rode of
teaching | mode of assessment | |-------|---|--|---|--------------------| | J | General Preinciples of Metallungy: Metals and
non metals, minerals a cross, occurrance of metals
based on standard electrode potential. | J.D. Lee
Purci & Shanna | class lecture using chalk and bleek | | | 2 | Furnaces used in metallurgy, Ellingham
diagrams for reduction of metals using C &
CO as reducing agent. | | ckiss notes | | | 5 | Electrolytic reduction (Al from alumina)
Hydrometallungy of Cu. | | | unit Tes | | 4 | Purcification of metals - Electrolytic, Kroll process
Pourting process with specific examples. | | | | | 5 | vom-Ankel-de Boer process, mond's process, zone refining with specific examples. | | | | | 6. | Discussion on performances of unit test and recommendation. | | | | | ١. | Acids and Bases: Arathemius theory and
limitations, Bransled-Lowny concept. | J. D Lee
Madik, Tuli, Madan
Purci d sharma | class lecture
using chalk
and black
board
class notes | | | 2 | Solvated proton, relative strength of acids.
Types of Acids-Base reactions. Levelling solvent. | | | | | 3 | Lewis acid-base concept, classification of
Lewis acids. | | | | | 4. | its applications in metallurgy. | | | unit Test | | 5 | Hand and soft acids and leases. HSAB premaible and its applications. | | | | | 6 | Discussion on performances of unit test and recommendation. | | | | | 1,2 | Chemistry of s & ? Block Elements: A
general discussion on the periodic table. | CoHon & Wilkinson | using chalk
and back
board. | | | 3 | Inent pain effect, relative stability of different excidation states. | J. B. Lee | | assignment | | 4, 5 | Diagonal relationship and anomalows behaviour of first member of each group. | Modik, Tuli, Madam | | | | 6. | Albtropy and catenation. | | | Unit Test | | 7.8 | Complex foremation tendency of a and p
block elements | | | | | 9 | Discussion on performances of unit text and recommendation. | | | | Do Nabajyeh Deka 27ebr Paper Name: Inorganic Chemistry III Paber Code: CHE-HC-4014 Sension: 2018, 2019, 2020, 2021, 2022 Do Nabanjish Deka Dobr Paper Name: Hnalytical Methods in Chanashy Semester - I | Paber | L Name: Analytical Methods on Charles of
2 Code: CHE-HE-5024 | | 2021,2022 | Named a | |-------|---|-------------------------|---|-----------| | no t | Topic/subtopic | Learning-
Resources | mode of | assessmen | | 1. | Qualifative and Quantitative Aspects of Analysis: | S.J. Borea
P. Samuch | class lecture
using chalk
and black | | | 2 | their embression. | | board | Unit toot | | 3 | Normal law of distribution of indennmake errors. | | | | | 4 | Statistical test of data, F. a, t test, registion of data and confidence interval. | | class males | | | 5. | Discussion on berformance of unit test and recommendation. | | | | | 1. | Optical Methods of Analysis: Oreign of spector interaction of readication with matter. | | | | | 2 | Fundamental laws of spectooscopy, relection reule. | | 78 | | | 3. | Been-Lamberts law and its validity. | | | | | 4. | Basic principle of un vis spectrophotometry. | | | | | 5 | Instrumentation in single and double beam uv-vis | | | | | 6,7 | Basic principle of quantitative analysis using Uv. vis spectophotometa. | | | | | 8 | Estimation of metal tons in agradution, geometre isomers, Keto eno tautomers. | ~ | | | | ₩9 | | | | | | 10 | Preinciple of instrumentation of IR spectoscopy. | | | | | 11,12 | FT spect-ophotometer, sampling technique. | | | | | 13 | Structure elucidation through data interpretation.
Istopic substitution - effect and interpretation. | | | | | 15,16 | Basic premitible of instrumentation of flame atom absorption and emission spectroscopy. | K. | | | | 17 | Technique of atomisation and sample induction. | | | | | 18 | Method of back ground connection. | | | | | 19 | Source of chemical interference and their method of removal. | | | | | 20,21 | Technique for quantitative entimation of
trace level of metal ions from water sample | | | | Do Nabajyoh Deka 27ebr Semester- VI | no of | ren code: CHE-H(-6014
Topic/Subtopic | Learning-
Resources | Mode of teaching | mode of assessment | |---------|--|------------------------|--|--------------------| | | Oreganometallic compounds: Defination, earlier
development and classification on the basis of bond
hybe, concept of hebticity of oreganic ligands. | Gurtu & Gurtu | class betwee
using chalk
and black
board. | unit tos | | 3 | metal combonyls,
18 electron rave, electron count of mononuclean, polynuclean and substituted metal canbonyls of 3d series. | J D Lee | Class rules. | | | 4,5,6 | General methods of preparation of mono and binuclear carbonyls of 3d socies. | | | | | 7.8.9 | structure of monoruclear and binuclear contonyls of Ca, Mm, Fe, Co, and Ni by VBT | | | | | 10 | n-acceptor behaviour of co, synergic effect
and extent of back bonding using IR data | | | | | 11,12 | Zerse's salt, poep", structure & evidence of synonya estat | | | | | 13 | Metal alkyls: Poeparation and structure of methyl Lithium and testocialkyl aluminium. | | | | | 14 | Multicenter bonding, concept of dimen of tetra alkyl aluminium and ziegler Nata Polymerisation. | | | | | 15 | species present in other solution of Griphand reagent and their structure. | | | | | 16,17 | Fernecene: Preparation, streactions, structures and area maticity. | | | | | 8.19,20 | Bonding in ferrocene | | | | | 1. | Theoreitical Preinciples in Qualifative Analysis
CH25 scheme): Basic principles involved in
analysis of cation and anion. | S. Barua | Lecture | Lab psa | | 2,3 | Chemical reactions involved in amon
analysis (dry and wet text) | Vogels | lab demo | Los pau | | 4 | Reactions involved in cotion conducts (day test) | 188 | | | | S. | solubility product and common in exact | | | | | 6 | Group seperation and group reeagent | | | Part I | | 7 | Interfereing anions and cause of interference. | | | | | 8 | Removal of interfering comions. | | | But | | - | The moves of switching commons. | | | | Do Nabarjych Deka #### Teaching Plan for the Session: Name of the Teacher: Dr. Dhiraj Talukdar Department: Chemistry Paper Name: ORGANICCHEMISTRY-III Semester: IV Paper Code: CHE-HC-4026 Learning Objectives: 1. Students are expected to learn about different classes of N-based compounds; their structures, synthesis and reactivity Students shall demonstrate the ability to identify and classify different types of N-based derivatives, alkaloids and hetrocyclic compounds/explain their structure mechanism and reactivity/critically examine their synthesis and reactions mechanism | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |-------------------------|--|------------------------|------------------------------------|--|-----------------------------------| | | Nitrogen Containing Functional
Groups | Books, E-
resources | Chalk &
Black Board
& ICT | Students' seminar | Unit Test &
Home
assignment | | 1-5 | Preparation and important reactions of
nitro compounds, nitriles and
isonitriles | | | | | | 6-8 | Amines/
Effect of substituent and solvent on
basicity | | | | | | 8-10 | Preparation and properties of amines | | | | | | 11 | Gabriel phthalimide synthesis
Carbylamine reaction | | | | | | 12 | Mannich reaction, Hoffmann's
exhaustive methylation | | | | | ### Teaching Plan for the Session: Name of the Teacher: Dr. Dhiraj Talukdar Department: Chemistry Paper Name: ORGANICCHEMISTRY-I Learning Objectives: Semester: II Paper Code: CHE-HC-2016 - Students are expected to learn different classes learn, explain, describe and analyze different classes of organic compounds, their reactivities and mechanisms along with stereo chemical considerations. - 2. Students will be able to identify different classes of organic compounds, describe their reactivity and explain/analyze their chemical and stereo chemical aspects | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |-------------------------|---|------------------------|------------------------------------|--|-----------------------------------| | | Stereochemistry | Books, E-
resources | Chalk &
Black Board
& ICT | Students' seminar | Unit Test &
Home
assignment | | 1 & 2 | Fischer Projection, Newmann and
Sawhorse Projection formulae and
their interconversions | | | | ussignment | | 3 & 4 | Geometrical isomerism: cis-trans and,
syn-anti isomerism | | | | | | 5 & 6 | E/Z notations with C.I.P rules. | | | | | | 7 | Optical Isomerism/ | | | | | | | Optical Activity, Specific Rotation | | | | | |----------------|---|------------------------|---------------------------------|-------------------|-----------------------------------| | 8 & 9 | Chirality/ Asymmetry | | | | | | 10 &
11 | Enantiomers, Molecules with two or
more chiral-centres, Distereoisomers,
meso structures, | | | | | | 12, 13
& 14 | Relative and absolute configuration:
D/L and R/S designations | | | , | | | 15 & 16 | Racemic mixture and resolution | | | | | | 17 | | | | | Unit Test | | | Aromatic Hydrocarbons | Books, E-
resources | Chalk &
Black Board
& ICT | Students' seminar | Unit Test &
Home
assignment | | 18 -21 | Aromaticity: Hückel's rule, aromatic
character of arenes, cyclic
carbocations/carbanions and
heterocyclic compounds with suitable
examples. | | | | | | 22-25 | Electrophilic aromatic substitution:
halogenation, nitration, sulphonation
and Friedel-Craft's
alkylation/acylation with their
mechanism. | | | | | | 26-29 | Directing effects of the groups | | | | | | 30 | | | | | Unit Test | | 31 | | | | | Students' seminar | Signature of the Teacher ## Teaching Plan for the Session: Name of the Teacher: Dr. Dhiraj Talukdar Department: Chemistry Paper Name: Chemistry I Learning Objectives: Semester: I Paper Code: 2023-24 This course aims at giving students insight into the fundamental aspects of atoms, ions and molecules in terms of their electronic structure and reactivity Students would have clear understanding of the concepts related to atomic and molecular structure, chemical bonding, periodicity and states of matter 3. Students will be able to work in a chemical laboratory following standard safety protocols | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |-------------------------|--|------------------------|------------------------------------|--|-----------------------------------| | | Unit IV: Structure of organic molecules | Books, E-
resources | Chalk &
Black Board
& ICT | Students' seminar | Unit Test &
Home
assignment | | 1 | Nature of bonding | | | | | | 2 & 3 | Hybridisation of atomic orbitals
(qualitative VB
and MO approach); | | | | | | 4 | effect of hybridization on bond
properties | | | | | | 5 | -b | | | | Unit Test | | | Unit V:
Stereochemistry of organic molecules | Books, E-
resources | Chalk &
Black Board
& ICT | Students' seminar | Unit Test &
Home
assignment | |---------|--|------------------------|---------------------------------|-------------------|-----------------------------------| | 6&7 | Representation of organic molecules
in 2D and 3D (Fischer,
Newman and Sawhorse projection
formulae and their inter conversions) | | | | | | 8 & 9 | Geometrical isomerism (cis-trans, syn-
anti, E/Z notations); | | . 1 35 | | 24 | | 10 & 11 | Concept of chirality (enantiomers and diastereomers) | | | | | | 12 & 13 | configuration and conformation,
barriers to rotation, conformational
analysis (ethane, butane, cyclohexane) | | | | | | 14 | | | | | Unit Test | | | Unit VI: Electronic effects in organic molecules | Books, E-
resources | Chalk &
Black Board
& ICT | Students' seminar | Unit Test &
Home
assignment | | 15 | Concept of electrophiles and nucleophiles; | | | | | | 16 & 17 | inductive effects;
resonance, conjugation and
delocalisation | | | | | | 18 | | | | | Students' seminar | Signature of the Teacher Teaching Plan for the Session: 2022-23 Name of the Teacher: Dr. Dhiraj Talukdar Department: Chemistry Paper Name: ORGANIC CHEMISTRY-II Semester: III Paper Code: CHE-HC-3026 ### Learning Objectives: Students are expected to learn and differentiate between various organic functional groups; explain, analyze and design transformations between different functional groups 2. Students will be able to describe and classify organic compounds in terms of their functional groups and reactivity | Sl. No
of
Lecture | Topic/ Subtopic | Learning Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment
for CIE | |-------------------------|--|--------------------|------------------------------------|--|-----------------------------------| | | Alkyl halides | Books, E-resources | Chalk &
Black Board
& ICT | Students' seminar | Unit Test &
Home
assignment | | 1,2&3 | Methods of preparation | | | | | | 4, 5 & 6 | nucleophilic substitution reactions – SN1, SN2 and SNi mechanisms with stereochemical aspects and effect of solvent etc. | | | | Home
assignment | | | nucleophilic substitution vs.
elimination. | | | | | |---------
--|--|---------------------------------|------------------------------|-----------------------------------| | | Aryl halides | ChemistryofHalogenated
Hydrocarbons/ Alkyl
halides | Books, E-
resources | Chalk & Black Board
& ICT | Students'
seminar | | 3 & 9 | Preparation, including
preparation from diazonium
salts. | 4 | | 9 | | | 10 & 11 | nucleophilic aromatic substitution;
SNAr, | | | | Home
assignment | | 12 | Benzyne mechanism. | | | | | | 13 &14 | Relative reactivity of alkyl,
allyl/benzyl, vinyl and aryl halides
towards nucleophilic substitution
reactions. | | | | | | 15 & 16 | Organo metallic compounds of Mg
and Li- Use in synthesis of organic
compounds | | | | Home
assignment | | 17 | Unit Test | | | | | | 18 | Students' Seminar | | | | | | | Alcohols, Phenols, Ethers and Epoxides: | Books, E-resources | Chalk &
Black Board
& ICT | Students' seminar | Unit Test &
Home
assignment | | 19-21 | Alcohols: preparation, properties
and relative reactivity of
1°,2°,3°alcohols, | | | | | | 22 | Bouveault-Blanc Reduction;
Preparation and properties of
glycols | | | | | | 23 & 24 | tetraacetate, Pinacol-Pinacolone
rearrangement | | | | | | 25 | Phenols: Preparation and properties | | V | | | . | 26 | Acidity and factors effecting it | | |---------|--|-------------------| | 27-29 | Ring substitution reactions, Reimer-Tiemann and Kolbe's- Schmidt Reactions, Fries and Claisen rearrangements with mechanism | | | 30 & 31 | Ethers and Epoxides: Preparation and reactions with acids. Reactions of epoxides with alcohols, ammonia derivatives and LiAIH4 | Home
ssignment | Signature of the Teacher Teaching Plan for the Session: 2022-23 Name of the Teacher: Dr. Dhiraj Talukdar Department: Chemistry Paper Name: ORGANIC CHEMISTRY-IV Semester: V Paper Code: CHE-HC-5016 ### Learning Objectives: 1. This course introduces students to nucleic acids, amino acids and pharmaceutical compounds. 2. Students will be familiarized with the importance of nucleic acids, amino acids 3. Students will develop their ability in understanding of enzymes, bioenergetics and pharmaceutical compounds. | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |-------------------------|---|-----------------------|------------------------------------|--|----------------------------------| | | Nucleic Acids | Books, E-resources | Chalk & Black
Board & ICT | Students' seminar | Unit Test &
Home assignment | | 1 & 2 | Components of nucleic acids;
Nucleosides and nucleotides | | | | | | 3 | Synthesis and reactions of Adenine | | | | | | 4 | Synthesis and reactions of Guanine | | | | | | 5 | Synthesis and reactions of Cytosine | | | | Home assignment | | 6 | Synthesis and reactions of Uracil | | | | | |---------|---|--------------------|------------------------------|-------------------|----------------------------------| | 7 | Synthesis and reactions of Thymine | | | | | | 8 & 9 | Polynucleotides: DNA and RNA | | | | | | 10 | | | | | Unit test | | | Amino Acids, Peptides and Proteins | Books, E-resources | Chalk & Black
Board & ICT | Students' seminar | Unit Test, Home
assignment & | | 11 & 12 | Amino acids, Peptides and their classification | _ | | | Students' Seminar | | 13-17 | α-Amino Acids - Synthesis, ionic
properties and reactions. Zwitterions,
pKa values, isoelectric point and
electrophoresis | | | | | | 18-21 | Study of peptides: determination of
their primary structures-end group
analysis | | | | Home assignment | | 22-26 | Methods of peptide synthesis.
Synthesis of peptides using N-
protecting, C-protecting and C-
activating groups -Solid-phase
synthesis | | | | | | 27 & 28 | | | | | Unit test &
Students' Seminar | grave grave Signature of the Teacher Dor #### Semester V CHE-HC-5016: ORGANIC CHEMISTRY-IV (Credits: Theory-04, Lab-02) Theory: 60 Lectures Course Objectives: This course introduces students to nucleic acids, amino acids and pharmaceutical compounds. Students will be familiarized with the importance of nucleic acids, amino acids and develop basic understanding of enzymes, bioenergetics and pharmaceutical compounds. Learning Outcome: Students will be able to explain/describe the important features of nucleic acids, amino acids and enzymes and develop their ability to examine their properties and applications. Nucleic Acids Components of nucleic acids; Nucleosides and nucleotides; Synthesis and reactions of: Adenine, Guanine, Cytosine, Uracil and Thymine; Polynucleotides: DNA and RNA (9 Lectures) Amino Acids, Peptides and Proteins Amino acids, Peptides and their classification. α-Amino Acids - Synthesis, ionic properties and reactions. Zwitterions, pKa values, isoelectric point and electrophoresis; Study of peptides: determination of their primary structures-end group analysis, methods of peptide synthesis. Synthesis of peptides using N-protecting, C-protecting and C-activating groups -Solid-phase synthesis (16 Lectures) Enzymes Introduction, classification and characteristics of enzymes. Salient features of active site of enzymes. Mechanism of enzyme action (taking trypsin as example), factors affecting enzyme action, coenzymes and cofactors and their role in biological reactions, specificity of enzyme action 32 (including stereospecificity), enzyme inhibitors and their importance, phenomenon of inhibition (competitive, uncompetitive and non-competitive inhibition including allosteric inhibition). #### (8 Lectures) #### Lipids Introduction to oils and fats; common fatty acids present in oils and fats, Hydrogenntion of fats and oils, saponification value, acid value, iodine number, rancidity. #### (6 Lectures) #### Concept of Energy in Biosystems Cells obtain energy by the oxidation of foodstuff (organic molecules). Introduction to metabolism (catabolism, anabolism). ATP: The universal currency of cellular energy, ATP hydrolysis and free energy change. ## Teaching Plan for the Session: Semester:V Paper Code: CHE-HE-5056 Name of the Teacher: Dr. Dhiraj Talukdar Department: Chemistry Paper Name: POLYMERCHEMISTRY Learning Objectives: 1. Students will learn the definition and classifications of polymers, 2. Students will learn kinetics of polymerization, molecular weight of polymers 3. Students will learn glass transition temperature, and polymer solutions etc. Students will also learn the brief introduction of preparation, structure and properties of some industrially important and technologically promising polymers | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching
& ICT
Tools | Experiential /
Participating
Learning Used | Mode of
Assessment
for CIE | |-------------------------|---|------------------------|---------------------------------------|--|-----------------------------------| | 1-3 | Glass transition temperature (Tg) and determination of Tg | Books, E-
resources | Chalk &
Black
Board &
ICT | Students'
seminar | Unit Test &
Home
assignment | | 4 & 5 | Free volume theory, WLF equation, | | | | | |--------|--|------------------------|------------------------------------|----------------------|-----------------------------------| | 5-8 | Factors affecting glass transition temperature (Tg). | | | | | | 9 | Unit Test | | | | | | 10-12 | Polymer Solution-Criteria for polymer solubility,
Solubility parameter | Books, E-
resources | Chalk &
Black
Board &
ICT | Students'
seminar | Unit Test &
Home
assignment | | 13 &14 | Thermodynamics of polymer solutions, entropy, enthalpy,
and free energy change of mixing of polymers solutions, | | | | | | 15-17 | Flory- Huggins theory, Lower and Upper critical solution
temperatures | | | | | | 18 | Unit Test | | | | | | 19 | Properties of Polymers (Physical, thermal, Flow & Mechanical Properties). Brief introduction to preparation, structure, properties and application of the following polymers: | Books, E-
resources | Chalk &
Black
Board &
ICT | Students'
seminar | Unit Test &
Home
assignment | | 20 | polyolefins, polystyrene and styrene copolymers | | | | | | 21 | poly(vinyl chloride) and related polymers, | | | | | | 22 | poly(vinylacetate)andrelatedpolymers | | | | | | 23 | ,acrylicpolymers, fluoropolymers | | | | | | 24 | ,polyamidesandrelatedpolymers. | | | | | | 25 | Phenolformaldehyderesins(Bakelite,Novalac), | | | | | | 26 | polyurethanes, silicone polymers, | | | | | | 27 | polydienes,
Polycarbonates, | | | | | | 28 | ConductingPolymers,[polyacetylene,polyaniline,poly(p-
phenylene sulphide polypyrrole, polythiophene)]. | And Tak | |----|---|-----------| | 29 | | unil Test | | 30 | Students' seminar | | Britis Signature of the Teacher # Teaching Plan for the Session: Semester: I Paper Code:CHE-HC-1016 Name of the Teacher: Dr. Purabi Sarmah Department: Chemistry Paper Name: INORGANIC CHEMISTRY-I
(CBCS) Mondrate Cristian (1-1-1) Learning Objectives: On successful completion, students would have clear understanding of - 1. The concepts related to atomic and molecular structure - 2.Chemical bonding - 3. Periodic properties of elements - 4.Redox behaviour of chemical species Students will also have hands on experience of standard solution preparation in different concentration units and learn volumetric estimation through acid-base and redox reactions. #### **Portions Taught:** ### Periodicity of Elements:16 L s, p, d, f block elements, the long form of periodic table. Detailed discussion of the following properties of the elements, with reference to s & p-block. (a) Effective nuclear charge, shielding or screening effect, Slater rules, variation of effective nuclear charge in periodic table. (b) Atomic radii (van der Waals) (c) Ionic and crystal radii. (d) Covalent radii (octahedral and tetrahedral) (e) Ionization enthalpy, Successive ionization enthalpies and factors affecting ionization energy. Applications of ionization enthalpy. (f) Electron gain enthalpy, trends of electron gain enthalpy. (g) Electronegativity, Pauling's/ Mulliken's/ Allred Rachow's/ and Mulliken-Jaffé's electronegativity scales. Variation of electronegativity with bond order, partial charge, hybridization, group electronegativity. Sanderson's electron density ratio. | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |-------------------------|--|-----------------------|------------------------------------|--|----------------------------------| | L1 | The long form of periodic table:s, p, d, f block elements | | | | | | L2 | Effective nuclear charge, shielding or
screening effect, Slater rules, variation | | | | | | L3 | of effective nuclear charge in periodic table. | | | | | | L4 | table. | | | | | | L5 | Atomic radii (van der Waals), Ionic
and crystal radii, Covalent radii
(octahedral and tetrahedral) | J. D. LEE | | | | | L6 | Ionization enthalpy, Successive ionization
enthalpies and factors affecting ionization | Miessler and Tarr | Chalk and | Conceptual questions | MCQ/UNIT | | L7 | energy. Applications of ionization enthalpy. | James E. Huheey | Board | Flipped Classroom | TEST/ HOME | | L8 | Electron gain enthalpy, trends of
electron gain enthalpy. | Puri Sharma Kalia | and | MCQ | ASSIGNMENT | | L9 | Electronegativity: Definition and its
periodic variation, factors affecting | Shriver Atkins | PPT | | | | | electronegativity | Puri Sharma Kalia | Chalk and | | | | | | K. D. Sharma | Board | | | | L10 | Electronegativity scale: Pauling's scale.Problems discussion | | | | - | | L11 | Electronegativity scale:
Mulliken'sscale | | | | | | L12 | Electronegativity scale: Allred
Rachow's/ and Mulliken-Jaffé's scale | | | | | | L13 | Variation of electronegativity with | | | | | | L14 | bond order, partial charge,
hybridization, group electronegativity.
Sanderson's electron density ratio. | | |-----|---|--| | L15 | Tutorials | | | L16 | | | | | | | #### (iii) Metallic Bond:10L Qualitative idea of valence bond and band theories. Semiconductors and insulators, defects in solids. (iv) Weak Chemical Forces: van der Waals forces, ion-dipole forces, dipole-dipole interactions, induced dipole interactions, Instantaneous dipole-induced dipole interactions. Repulsive forces, Hydrogen bonding (theories of hydrogen bonding, valence bond treatment) Effects of chemical force, melting and boiling points, solubility energetics of dissolution process. | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |-------------------------|---|--------------------------------------|------------------------------------|--|----------------------------------| | L1 | | | | | | | L2 | Qualitative idea of valence bond and band theories. | | | | | | L3 | Semiconductors and insulators
Defects in solids | 27002.00000000 | - AAAAA, | | | | L4 | | J. D. LEE | Chalk and | Conceptual questions | MCQ/UNIT | | L5 | Weak Chemical Forces: van der Waals
forces, ion-dipole forces, dipole-dipole | Miessler and Tarr | Board/ | Flipped Classroom | TEST/ HOME | | L6 | interactions, induced dipole interactions,
Instantaneous dipole-induced dipole
interactions | James E. Huheey
Puri Sharma Kalia | PPT | MCQ | ASSIGNMENT | | L7 | Repulsive forces, Hydrogen bonding
(theories of hydrogen bonding, valence | Shriver Atkins | | | | | L8 | bond treatment) | | | | | | L9 | Lileus of themself | | | |-----|---|--------------|--| | | boiling points, solubility energetics of dissolution process. | K. D. Sharma | | | L10 | Tutorial/ Doubt clearing | | | # Oxidation-Reduction: 4L Redox equations, Standard Electrode Potential and its application to inorganic reactions. Principles involved in volumetric analysis to be carried out in class. | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |-------------------------|---|-----------------------|------------------------------------|--|----------------------------------| | L1 | Concept of Oxidation and
Reduction/Oxidizing agent and reducing
agentRedox equations | Shriver Atkins | Chalk and | Conceptual questions | MCQ/UNIT | | L2 | Standard Electrode Potential: its | Puri Sharma Kalia | Board/ | Flipped Classroom | TEST/ HOME | | L3 | application to inorganic reactions | K. D. Sharma | PPT | MCQ | ASSIGNMENT | | L4 | Principles involved in volumetric analysis
to be carried out in class/problems
discussion | | | | | Signature of the Teacher # Teaching Plan for the Session: Name of the Teacher: Dr. Purabi Sarmah Department: Chemistry Paper Name: INORGANIC CHEMISTRY-II (CBCS) Learning ObjectivesOn successful completion of this course students would be able To apply theoretical principles of redox chemistry in the understanding of metallurgical processes. Students will be able to identify the variety of s and p block compounds and comprehend their preparation, structure, bonding, properties and uses. Experiments in this course will boost their quantitative estimation skills and introduce the students to preparative methods in inorganic chemistry. Semester: III Paper Code:CHE-HC-3016 #### **Portions Taught:** # Chemistry of s and p Block Elements: 14 L Study of the following compounds with emphasis on structure, bonding, preparation, properties and uses. Boric acid and borates, boron nitrogen compounds, boranes, carboranes and graphitic compounds, silanes, oxides and oxoacids of nitrogen, phosphorus and chlorine. Peroxo acids of sulphur, interhalogen compounds, polyhalide ions, pseudohalogens and basic properties of halogens. #### Noble Gases: 8L Occurrence and uses, rationalization of inertness of noble gases, Clathrates; preparation and properties of XeF₂, XeF₄ and XeF₆; Nature of bonding in noble gas compounds (Valence bond treatment and MO treatment for XeF₂). Molecular shapes of noble gas compounds (VSEPR theory). ## Inorganic Polymers: 8L Types of inorganic polymers, comparison with organic polymers, synthesis, structural aspects and applications of silicones and siloxanes. Silicates – clays and zeolites, polyphosphazenes, metal-organic framework compounds (MOFs). # **Teaching Plan:** ## Chemistry of s and p Block Elements: 14 L | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |-------------------------|---|-----------------------|------------------------------------|--|----------------------------------| | L1
L2 | Oxo compounds of Boron: Boric acid
and borates - structure, bonding,
preparation, properties and uses | | | | | | L3 | Boron nitrogen compounds: Boron nitride, borazine, Boron triazide | | | | | | L4
L5 | Boron Hydrides or Boranes: structure,
bonding, preparation, properties and
uses, Classification, Wedge rule, Styx
code | | | | | | L6 | Carboranes and graphitic compounds,
Silanes | J. D. LEE | | | | | L7 | Oxides and oxoacids of nitrogen | Miessler and Tarr | Chalk and | Concept based questions | MCQ | | L8 | Oxides and oxoacids of Phosphorus | James E. Huheey | Board | Doubt clearing | Unit | | L8 | Oxides and oxoacids of Chlorine | Puri Sharma | and | Flipped Classroom | Test/Sessional | | L9 | Peroxo acids of sulphur | Kalia | PPT | | Exam | | L10 | Interhalogen compounds | A Sharpe | | | | | 11 | Polyhalide ions | | | |-----|-------------------------------|----|--| | 12 | Pseudohalogens | 70 | | | .13 | Basic properties of halogens. | | | | .14 | Tutorial (Doubt Clearing) | | | # Noble Gases: 8L | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |-------------------------
--|-----------------------|------------------------------------|--|----------------------------------| | LI | Occurrence and uses, rationalization of inertness of noble gases, Clathrates | | | | | | L2 | Preparation, Structure and properties
of XeF ₂ | | | | | | L3 | Preparation, Structure and properties
of XeF ₄ | | | | | | L4 | Preparation, Structure and properties
of XeF ₆ ; | J. D. LEE | Chalk and | Concept based questions | Unit test | | L5 | Nature of bonding in noble gas
compounds (Valence bond treatment | Miessler and Tarr | Board | Doubt clearing | Home assignment | | | and MO treatment for XeF ₂) Molecular shapes of noble gas | James E. Huheey | and | Flipped Classroom | | | L6 | compounds (VSEPR theory). | Puri Sharma Kalia | PPT | Seminar presentation | | | L7 | 1 | | | | | | L8 | Tutorials | | 2 | | | Inorganic Polymers: 8L | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |-------------------------|--|-----------------------|------------------------------------|--|----------------------------------| | L1 | Types of inorganic polymers,
comparison with organic polymers | | | | | | L2 | Silicones:synthesis, structural aspects
and applications | J. D. LEE | Chalk and | Concept based questions | Unit test | | L3 | Siloxanes:synthesis, structural aspects
and applications | Miessler and Tarr | Board | Doubt clearing | Home assignment | | L4 | Silicates – clays and zeolites | James E. Huheey | and | Flipped Classroom | | | L5 | | Puri Sharma Kalia | PPT | Seminar presentation | | | L6 | Polyphosphazenes | | | | | | L7 | Metal-organic
frameworkcompounds(MOFs) | | | | | | L8 | Tutorial | | | | | Signature of the Teacher # Teaching Plan for the Session: Name of the Teacher: Dr. Purabi Sarmah Department: Chemistry Paper Name: INORGANIC CHEMISTRY-III (CBCS) Learning Objectives: On successful completion, students will be able 1.To name coordination compounds according to IUPAC, 2.To explain bonding in Coordination compounds, understand their various properties in terms of CFSE and predict reactivity etc. Semester: IV Paper Code:CHE-HC-4016 - 3.Also, they will be able to appreciate the general trends in the properties of transition elements in the periodic table and identify differences among the rows. - 4. Through the experiments students not only will be able to prepare, estimate or separate metal complexes/compounds but also will be able to design experiments independently which they should be able to apply if and when required. #### **Portion Taught:** #### Transition Elements: 14L General group trends with special reference to electronic configuration, colour, variable valency, magnetic and catalytic properties, ability to form complexes. Chemistry of Ti, V, Cr Mn, Fe and Co (Chemistry of first -row transition elements) in various oxidation states as halides, oxides, hydroxides. | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |-------------------------|-----------------|-----------------------|------------------------------------|--|----------------------------------| |-------------------------|-----------------|-----------------------|------------------------------------|--|----------------------------------| | L1 | Transition elements: General Group
trends with special reference to | | | | | |-----|---|-------------------|-----------|----------------------|------------| | L2 | electronic configuration, colour,
variable valency, magnetic and
catalytic properties | | | | | | L3 | Chemistry of Ti: Compounds of Ti
invarious oxidation states as halides, | J. D. LEE | Chalk and | Conceptual questions | MCQ/UNIT | | L4 | oxides, hydroxides /Applications | Miessler and Tarr | Board/ | Flipped Classroom | TEST/ HOME | | L5 | Chemistry of V: Compounds of V in various oxidation states as halides, | James E, Huheey | PPT | MCQ | ASSIGNMENT | | L6 | oxides, hydroxides /Applications | Puri Sharma Kalia | | | | | L7 | Chemistry of Chromium (Cr) | Shriver Atkins | | | | | L8 | Chemistry of Manganese (Mn) | Puri Sharma Kalia | | | | | L9 | Chemistry of Iron (Fe) | K. D. Sharma | | | | | L10 | Chemistry of chromium (Cr) |] | | | | | L11 | Chemistry of Cobalt (Co) | | | | | | L12 | | | | | | | L13 | Tutorial/ Doubt clearing | | | | | | L14 | | | | | | # Lanthanoids and Actinoids: 6L Electronic configuration, oxidation states, colour, spectral and magnetic properties, lanthanide contraction, separation of lanthanides (ion-exchange method only). | Sl. No Topic/ Subtopic of Lecture | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |-----------------------------------|-----------------------|------------------------------------|--|----------------------------------| |-----------------------------------|-----------------------|------------------------------------|--|----------------------------------| | Li | Introduction to Lanthanoids:
Electronic configuration, oxidation
states | | | | | |----|---|-----------------------------------|------------|----------------------|------------| | L2 | Colour, spectral and magnetic properties, | J. D. LEE | Chalk and | Conceptual questions | MCQ/UNIT | | L3 | Lanthanide contraction and its consequences | Miessler and Tarr | Board | Flipped Classroom | TEST/ HOME | | L4 | Separation of lanthanides by ion-
exchange method only. | James E. Huheey
Shriver Atkins | and
PPT | MCQ | ASSIGNMENT | | L5 | Introduction to Actinoids:
Electronic configuration, oxidation
states | | Chalk and | | | | L6 | Discussion | | Board | | | ### Bioinorganic Chemistry:10L Metal ions present in biological systems, classification of elements according to their action in biological system. Geochemical effect on the distribution of metals. Sodium / K-pump, carbonic anhydrase and carboxypeptidase. Excess and deficiency of some trace metals. Toxicity of metal ions (Hg, Pb, Cd and As), reasons for toxicity, Use of chelating agents in medicine. Iron and its application in biosystems, Haemoglobin; Storage and transfer of iron. | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |-------------------------|--|-----------------------|------------------------------------|--|----------------------------------| | L1 | Role of Metal ions present in
biological systems and their
classification according to their action
in biological system
Geochemical effect on the distribution
of metals | | Chalk and
Board | | MCQ/UNIT TEST/ HOME | | L2 | Sodium / K-pump | | \$50R35550 | | TEST/ HOME | | L3 | Carbonic anhydrase | Miessler and Tarr | and | Conceptual questions | ASSIGNMENT | | L4 | Carboxypeptidase | James E. Huheey | PPT | Flipped Classroom | | |-----|---|--|-------------------------|-------------------|--| | L5 | Excess and deficiency of some trace
metals- effects in our body | Shriver Atkins | kins Chalk and
Board | MCQ | | | L6 | Toxicity of metal ions (Hg, Pb, Cd and
As), reasons for toxicity | | | | | | L7 | Use of chelating agents in medicine | | | | | | L8 | Iron and its application in bio-systems, | l its application in bio-systems,
globin; Storage and transfer of | | | | | L9 | iron. | | | | | | L10 | Tutorial | | | | | Barnels Signature of the Teacher # Teaching Plan for the Session: Name of the Teacher: Dr. Purabi Sarmah Department: Chemistry Paper Name: Inorganic Chemistry (IV) Semester: VI Paper Code: CHE-HC- 6016 # Learning Objectives: By studying this course, the students will be expected To learn about how ligand substitution and redox reactions take place in coordination complexes. - 2. Also, to learn about organometallic compounds, comprehend their bonding, stability, reactivity and uses. - 3. They will be familiar with the variety of catalysts based on transition metals and their application in industry. - On successful completion, students in general will be able to appreciate the use of concepts like solubility product, common ion effect, pH etc. in analysis of ions and how a clever design of reactions, it is possible to identify the components in a mixture. - With the experiments related to coordination compound synthesis, calculation of 10Dq, controlling factors etc. will make the students appreciate the concepts of theory in experiments. ### **Portion Taught:** ### Mechanism of Inorganic Reactions: 18L Introduction to inorganic reaction mechanisms. Substitution reactions in square planar complexes, Trans-effect, theories of trans effect, Mechanism of nucleophilic substitution in square planar complexes, Thermodynamic and Kinetic stability, Kinetics of
octahedral substitution, Ligand field effects and reaction rates, Mechanism of substitution in octahedral complexes. Electron transfer reactions. # Teaching Plan: | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating Learning
Used | Mode of
Assessment for
CIE | |-------------------------|---|-----------------------|------------------------------------|--|----------------------------------| | L1 | Introduction to inorganic reaction
mechanisms: Dissociative S _N ¹ and | | TCT Tools | Useu | CIE | | L2 | Associative S _N ² | | | | | | L3 | Substitution reactions in square planar
complexes: Mechanism of
nucleophilic substitution reactions | | | | | | L4 | Trans effect: Applications of Trans
effect | | | | | | L5 | Theories of Trans effect:
The electrostatic Polarization Theory | | | | | | L6 | The pi-bonding theory | | Chalk and | Conceptual questions | MCQ/UNIT | | L7 | Thermodynamic and Kinetic stability: | | Board/ | Flipped Classroom | TEST/ HOME | | L8 | Labile and inert complexes | | PPT | MCQ | ASSIGNMENT | | L9 | 61.0.0 | | | | | | L10 | Substitution reactions in octahedral complexes:Mechanism of substitution | | | | | | L11 | in octahedral complexes | | | | | | L12 | Kinetics of octahedral substitution | | | | | | L13 | Ligand field effects and reaction rates | | | | | | L14 | D | | | | | | L15 | Electron transfer reactions: Outer
sphere/ Inner sphere reactions | | | | | | L16 | | | | | | | L17 &
L18 | Tutorial/ Doubt clearing/ Solution of previous year questions. | | | | | ## Transition Metals in Catalysis: 10 L Study of the following industrial processes and their mechanism: 1. Alkene hydrogenation (Wilkinson's Catalyst) 2. Hydroformylation (Co catalysts) 3. Wacker Process 4. Synthetic gasoline (Fischer Tropsch reaction) 5. Synthesis gas by metal carbonyl complexes. ### Teaching Plan: | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |-------------------------|--|-----------------------|------------------------------------|--|---| | L1 | Catalysts and Catalysis:
Criteria for selection of catalyst for
industrial process | | | | 111111111111111111111111111111111111111 | | L2 | Alkene hydrogenation (Wilkinson's
Catalyst) and comparison with other | | | | | | L3 | catalysts | | | | | | L4 | | J. D. LEE | Chalk and | Conceptual questions | MCQ/UNIT | | L5 | Hydroformylation (Co catalysts) | Miessler and Tarr | Board | Flipped Classroom | TEST/ HOME | | L6 | Wacker Process | James E. Huheey ar | and | MCQ | ASSIGNMENT | | L7 | Synthetic gasoline (Fischer Tropsch
reaction) | Shriver Atkins | PPT | | | | L8 | Synthesis gas by metal carbonyl complexes | | Chalk and | | | | L9&L10 | Tutorial/ Doubt Clearing | | Board | | | Signature of the Teacher #### Teaching Plan for the Session: Name of the Teacher: Dr. Purabi Sarmah Department: Chemistry Semester:V Paper Name: ANALYTICAL METHODS IN CHEMISTRY (Honours Elective Paper) Paper Code: CHE-HE- 5026 #### Learning Objectives: On successful completion of this course students will be able 1. To learn about qualitative and quantitative aspects of analysis such as errors, accuracy, precision, validation of analytical results etc. 2. To familiarize with different analytical methods as well as instrumentation techniques routinely used in chemical analysis. 3. To learn various laboratory techniques such as separation techniques viz. chromatography, solvent extraction etc. 4. To acquire knowledge about different spectroscopic tools and how they are helpful in identification of unknown compounds. Through the experiments students will gain hands on experience of the analytical techniques. This will enable students to take judicious decisions while analyzing different samples. #### Portion Taught: #### Thermal methods of analysis: 5L Theory of thermogravimetry (TG), basic principle of instrumentation. Techniques for quantitative estimation of Ca and Mg from their mixture. # Teaching Plan: | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |-------------------------|--|-----------------------|------------------------------------|--|----------------------------------| | LI | Theory of thermogravimetry (TG):
Introduction and Classification | Analytical | | | | | L2 | Basic principle of instrumentation:
DTA, DSC, TMA, DMA | Methods in | Chalk and | Conceptual questions | MCQ/UNIT | | L3 | TGA: Instrumentation and
Interpretation of TG graph | Chemistry by | Board/ | Flipped Classroom | TEST/ HOME | | L4 | Techniques for quantitative estimation of Ca and Mg from their mixture | Vishal | PPT | MCQ | ASSIGNMENT | | L5 | Tutorial | Publication | | | | # Electroanalytical methods:10 L Classification of electroanalytical methods, basic principle of pH metric, potentiometric and conductometric titrations. Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values. | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |-------------------------|---|----------------------------|------------------------------------|--|----------------------------------| | LI | Introduction and Classification of electroanalytical methods | Analytical | S-70-770 V | | | | L2 | pH metry: Basic principle and
electrometric measurement of P ^H & pH
metric titrations. | Methods in
Chemistry by | Chalk and
Board/ | Conceptual questions Flipped Classroom | MCQ/UNIT
TEST/ HOME | | L3 | Conductometric titrations: Principle
and basic components | Vishal | PPT | MCQ | ASSIGNMENT | | L4 | Determination of equivalence point by | Publication | | | | | L5 | conductometric titration | | | | | | L6 | Determination of pKa values by | | | |-----|---|------|--| | L7 | conductometric titration | 1:11 | | | L8 | Potentiometry: Definition Potentiometric Titration: Principle Potentiometric titration curves | | | | L9 | Construction of electrochemical cells
for potentiometric titrations | | | | .10 | Determination of equivalence point by potentiometric titration | | | Separation techniques: 15L Teaching Plan: Solvent extraction:5L Classification, principle and efficiency of the technique. Mechanism of extraction: extraction by solvation and chelation. Technique of extraction: batch, continuous and counter current extractions. Qualitative and quantitative aspects of solvent extraction: extraction of metal ions from aqueous solution, extraction of organic species from the aqueous and nonaqueous media. | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |-------------------------|--|------------------------|------------------------------------|--|----------------------------------| | L1 | Introduction: Definition and
Classification | | | | 2795-0785-0785-0785 | | L2 | Principle and efficiency of the technique | Analytical | Chalk and | Conceptual questions | MCQ/UNIT | | L3 | Mechanism of extraction: extraction
by solvation and chelation | Methods in | Board/ | Flipped Classroom | TEST/ HOME | | L4 | Technique of extraction: batch, continuous and counter current extractions. | Chemistry by
Vishal | PPT | MCQ | ASSIGNMENT | | L5 | Qualitative and quantitative aspects of
solvent extraction: extraction of metal
ions from aqueous solution, extraction | Publication | | | | | | of organic species from the aqueous and nonaqueous media. | | | |---|---|--|--| | - | | | | #### Chromatography: 5L Classification, principle and efficiency of the technique. Mechanism of separation: adsorption, partition & ion exchange. Development of chromatograms: frontal, elution and displacement methods. Qualitative and quantitative aspects of chromatographic methods of analysis: IC, GLC, GPC, TLC and HPLC. ### Teaching plan: | Sl. No
of
Lecture | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |-------------------------|--|--------------------------|------------------------------------|--|----------------------------------| | L1 | Introduction: Definition and
Classification | | | | | | L2 | Principle and efficiency of the technique | | | | | | L3 | Mechanism of separation: adsorption,
partition, size exclusion & ion
exchange | Analytical
Methods in | Chalk and
Board/ | Conceptual questions Flipped Classroom
 MCQ/UNIT TEST/ HOME | | L4 | Development of chromatograms:
frontal, elution and displacement
methods. | Chemistry by | PPT | MCQ | ASSIGNMENT | | L5 | Qualitative and quantitative aspects of chromatographic methods of analysis: IC, GLC, GPC, TLC and HPLC. | Vishal
Publication | | | | #### Stereoisomeric separation and analysis:5L Measurement of optical rotation, calculation of Enantiomeric excess (ee)/ diastereomeric excess (de) ratios and determination of enantiomeric composition using NMR, Chiral solvents and chiral shift reagents. Chiral chromatographic techniques using chiral columns (GC and HPLC). Role of computers in instrumental methods of analysis. # Teaching plan: | Topic/ Subtopic | Learning
Resources | Mode of
Teaching &
ICT Tools | Experiential /
Participating
Learning Used | Mode of
Assessment for
CIE | |--|--|--|--|--| | Introduction: Definition and
Classification of stereoisomers/optical
activity | | | | | | Measurement of optical rotation,
calculation of Enantiomeric excess
(ee)/ diastereomeric excess (de) ratios | Analytical | Chalk and | Conceptual questions | MCQ/UNIT | | Why the need of separation of
enantiomers and difficulty of their
separation. Chiral solvents and chiral
shift reagents | Chemistry by | Board/
PPT | Flipped Classroom
MCQ | TEST/ HOME ASSIGNMENT | | Determination of enantiomeric
composition using NMR | Vishal | | | | | Chiral chromatographic techniques
using chiral columns (GC and HPLC)
and Role of computers in instrumental
methods of analysis. | Publication | | | | | | Introduction: Definition and Classification of stereoisomers/optical activity Measurement of optical rotation, calculation of Enantiomeric excess (ee)/ diastereomeric excess (de) ratios Why the need of separation of enantiomers and difficulty of their separation. Chiral solvents and chiral shift reagents Determination of enantiomeric composition using NMR Chiral chromatographic techniques using chiral columns (GC and HPLC) and Role of computers in instrumental | Introduction: Definition and Classification of stereoisomers/optical activity Measurement of optical rotation, calculation of Enantiomeric excess (ee)/ diastereomeric excess (de) ratios Why the need of separation of enantiomers and difficulty of their separation. Chiral solvents and chiral shift reagents Determination of enantiomeric composition using NMR Chiral chromatographic techniques using chiral columns (GC and HPLC) and Role of computers in instrumental | Introduction: Definition and Classification of stereoisomers/optical activity Measurement of optical rotation, calculation of Enantiomeric excess (ee)/ diastereomeric excess (de) ratios Why the need of separation of enantiomers and difficulty of their separation. Chiral solvents and chiral shift reagents Determination of enantiomeric composition using NMR Chiral chromatographic techniques using chiral columns (GC and HPLC) and Role of computers in instrumental | Introduction: Definition and Classification of stereoisomers/optical activity Measurement of optical rotation, calculation of Enantiomeric excess (ee)/ diastereomeric excess (de) ratios Why the need of separation of enantiomers and difficulty of their separation. Chiral solvents and chiral shift reagents Determination of enantiomeric composition using NMR Chiral chromatographic techniques using chiral columns (GC and HPLC) and Role of computers in instrumental | Baenah Signature of the Teacher